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Abstract. Large Language Models (LLMs), such as GitHub Copilot and
ChatGPT have become popular among programming students. Students
use LLMs to assist them in programming courses, including generating
source code.
Previous work has evaluated the ability of LLMs in solving introductory-
course programming assignments. The results have shown that LLMs are
highly effective in generating code for introductory Computer Science
(CS) courses. However, there is a gap in research on evaluating LLMs’
ability to generate code that solves advanced programming assignments.
In this work, we evaluate the ability of four LLM tools to solve program-
ming assignments from advanced CS courses in three popular program-
ming languages, Java, Python, and C. We manually select 12 problems,
three problems from introductory courses as the baseline and nine pro-
gramming assignments from second- and third-year CS courses. To eval-
uate the LLM-generated code, we generate a test suite of 1000 test cases
per problem and analyze the program output.
Our evaluation shows that although LLMs are highly effective in gen-
erating source code for introductory programming courses, solving ad-
vanced programming assignments is more challenging. Nonetheless, in
many cases, LLMs identify the base problem and provide partial solu-
tions that may be useful to CS students. Furthermore, our results may
provide useful guidance for teachers of advanced programming courses
on how to design programming assignments.

Keywords: large language models · programming assignments · com-
puter science · advanced courses

1 Introduction

In recent years, advances in machine learning have enabled high-quality analysis
of natural language for diverse purposes, including chatbots, image, and code
generation. Textual Large Language Models (LLMs) are generative machine-
learning models that use large quantities of data during the training process.
⋆ Both authors contributed equally
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Given a prompt, namely a text sequence, the trained model generates a text
response that is likely to follow the provided prompt.

Many LLMs have the ability to generate code when the data they are trained
on includes code examples. Automatic Code Generators (ACGs), such as Github
Copilot3, are specialized LLMs that are trained for source-code generation. Chat-
bots, such as ChatGPT4 and Hugging Face chats5 are general-purpose LLMs
that may be trained on code examples. Many students use different LLM tools,
including chatbots and ACGs to receive assistance for their programming as-
signments [2, 5, 9, 10, 12]. A survey by Keuning et al. with 264 responses shows
that the use of LLM tools among students has increased in recent years [10]. As
a response, many teachers have started including LLMs in their educational plan
or adopt policies to ensure that the students receive the required education.

Previous research has shown that LLM tools are highly capable at solving
introductory programming tasks [3, 6, 7] and perform well in introductory Com-
puter Science (CS) courses [16]. In particular, given a prompt that describes the
program to implement in natural language, LLM tools can generate functional
code after one or multiple attempts [3, 6, 7].

Recent work has shown that advanced programming students believe that
the use of LLM tools assists them but they also face problems such as inaccu-
rate or incorrect answers [1, 4, 11]. In this work, we investigate how LLM tools
handle advanced programming assignments. In particular, we focus on program-
ming assignments from second and third-year university courses to investigate
how LLM tools handle them. Typically, these problem descriptions aim to train
the problem-solving abilities of the students and describe an everyday-life prob-
lem that the students need to solve. The question here is whether LLM tools
can decipher a natural-language described programming assignment, recognize
the algorithmic problem to solve, and generate functional code that solves the
problem.

More specifically, in this work, we evaluate the ability of a set of publicly
available LLM-based tools to generate code for a selected set of nine program-
ming assignments from advanced CS courses. We ask the LLMs to generate code
in three popular programming languages, Java, Python, and C.

We pose the following research questions to guide our research:

RQ1: How effective are LLM tools at solving advanced programming assign-
ments correctly?

RQ2: What is the capability of LLM tools at identifying the problem to solve?
RQ3: How does the choice of LLM tool and programming language affect

source-code generation?

All evaluation data and prompts used for generating code are available at
https://github.com/Emir-Catir-and-Robin-Claesson/publish.

3 Copilot: https://github.com/features/copilot
4 ChatGPT https://chat.openai.com/chat
5 Hugging Face: https://huggingface.co/chat

https://github.com/Emir-Catir-and-Robin-Claesson/publish
https://github.com/features/copilot
https://chat.openai.com/chat
https://huggingface.co/chat
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2 Related Work

Evaluating LLMs in CS courses. In a broad scope, Šavelka et al. evaluate the
performance of GitHub Copilot at solving multiple computer education tests,
including multiple-choice questions and programming exercises in Python. Their
findings show that while the ACG model fails to pass the course, it achieves
high score in most exercises and manages to improve the answers based on the
auto-grader feedback [16]. In a different approach, Reeves et al. evaluate the
performance of Github Copilot at solving Parsons Problems, namely programs
where the program code is given in incorrect order. They show that Copilot can
solve 80% of the problems in Python if ignoring indentation errors [14].

Evaluating LLMs in introductory programming assignments. Denny et al. inves-
tigate the solving ability of GitHub Copilot on a large set of simple programming
exercises in Python. When the LLM assistant fails to generate a correct solution,
the authors try to provide more clear instructions in natural language (prompt
engineering). In total, Copilot fails to provide correct solution to 20% of the
problems [6]. Finnie-Ansley et al. assess the ability of GitHub Copilot to solve
introductory programming problems, such as the Rainfall problem [15]. Their
work includes evaluating multiple generated programs for a set of programming
tests in a programming course. Their findings show that GitHub Copilot received
high scores on the programming tests outperforming most of the students [7].

Evaluating LLMs in advanced programming assignments. Michailidis et al. in-
vestigate the use of LLMs for the automatic transformation of textual problem
descriptions into concrete Constraint Programming (CP) specifications6. Their
experiments include a set of exercises from a CP course and show that the as-
sisted LLM can solve from 65% for easier problems up to 35% for the more
complex assignments. Finnie-Ansley et al. investigate the performance of and
ACG, OpenAI Codex, at solving exams questions of a CS2 course, Data struc-
tures and Algorithms. Their results show that the ACG performs better than
students in this course Finnie-Ansley et al.. Instead, in this paper, we evaluate
different ACGs on more advanced courses, namely CS4 and CS5.

3 Motivating Example

Consider the bin-packing problem, a famous NP-complete problem where the
objective is to place a set of weighted items in the minimum number of bins of
specified capacity. Figure 1 shows the high-level description of the bin-packing
problem that was given during a lecture in a CS5 course, Algorithms, Data
Structures, and Complexity.

We want to investigate, whether LLM tools are able to 1) identify the problem
and 2) generate correct code to solve or approximate the problem. For example,
identifying the problem as the bin-packing problem is a significant assistance
6 Constraint programming is a method for solving combinatorial problems.
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A person is moving out of their house and need to pack all their belongings into
boxes. They have an infinite number of boxes available, but want to use as few as
possible. The person has a list of all their items that need to be packed in boxes.
All boxes have the same weight capacity.

Fig. 1: Problem description prompt for the boxes problem (Table 1).

to a student. Apart from identifying the problem, an LLM tool may be able to
generate code that solves the problem correctly, in our case, to find the optimal
solution to the bin-packing problem.

When we provided the problem prompt in Figure 1 to Github Copilot, the
tool generated the code in Listing 1. The code defines a function pack_items,
which takes as input the capacity of the boxes, weight_capacity, and the list of
items that need to fit in the boxes. In the generated code snippet, line 1 defines
the method, and lines 2-3 declare needed variables. The generated algorithm
(lines 5-15) uses a straightforward heuristic: all listed items are sequentially
assigned into a box (lines 9 to 10). When adding an item to the current box
surpasses the weight limit (line 6), the algorithm assigns the item to a new box
(line 7 and 8). This solution is a greedy heuristic and may return the optimal
solution in some cases but does not find the optimal solution in the general case.

It is worth mentioning that we attempted to modify the original prompt, with
clear indications that the tool should use a complete algorithm or use Constraint
Programming (CP), a combinatorial solving technique, with no success. In the
first case, the generated code was again a heuristic, and in the second case, the
generated code was incorrect. Another interesting result is that all the tested
LLM tools in all three languages we tested, Java, Python, and C, produce similar
heuristics.

To evaluate the solution in Listing 1, we generated 1000 random problem
instances and compared the answers of the tool-generated solution with our
reference solution. Out of the 1000 problem instances, the tool-generated code
produces 754 correct answers. Although the generated solution is not correct, the
code is still interesting because it partially solves the problem and may provide
a significant assistance to students.

To identify similar cases, where an LLM has solved part of the problem, we
introduce the measure of accuracy that measures the rate of correctly verified
test cases over the total number of test cases. We define this metric in Section 4.4.

4 Methodology

Figure 2 shows the overview of the methodology, which consists of two main
parts 1) code generation and 2) code verification part.

The code generation part includes selecting the LLM tools (Section 4.1) and
the problems (Section 4.2) to evaluate. For each of the problems, we create a
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1 def pack_items(weight_capacity , items):
2 boxes_needed = 0
3 current_box_weight = 0
4
5 for item_weight in items:
6 if current_box_weight + item_weight > weight_capacity:
7 boxes_needed += 1
8 current_box_weight = item_weight
9 else:

10 current_box_weight += item_weight
11
12 if current_box_weight > 0:
13 boxes_needed += 1
14
15 return boxes_needed;
16 ...

Listing 1: Python code generated by Github Copilot for the Boxes problem.

prompt and provide this prompt as input to each LLM tool to generate source
code (Section 4.3).

The code verification part includes evaluating the generated solutions against
our reference solutions using a test suite that we generate per problem (Sec-
tion 4.4).

4.1 LLM Selection

The selection of LLM tools to evaluate is based on the purpose of this study to
evaluate code generation and the tools that are widely accessible to students.
ACGs are specially trained to generate code, thus the evaluation uses two ACGs,
Github Copilot and CodePal7. GitHub Copilot is a code-generating tool that
integrates with popular IDEs such as Intellij and Visual Studio Code. CodePal
is based on various OpenAI models, mainly on GPT-3.5 and GPT-4, and is a
tool that focuses on code generation. Students use also chatbots to generate
code [10]. To investigate general-purpose chatbots, we select two freely available
chatbots in Hugging Face, Llama3-70b, with 70 billion parameters, and Mistral-
Nemo-Instruct-2407, with 12 billion parameters.

4.2 Problem Selection

We handpicked programming assignments and problem descriptions from two CS
degree programs. Table 1 shows an enumeration of the problems (first column),
a short name describing the problem (second column), the CS level course that

7 CodePal: https://codepal.ai

https://codepal.ai


6 E. Catir, R. Claesson, and R.M. Tsoupidi

_
prompt

Copilot

CodePal

HF

DJava

DC

DPython

...

...

DPython

...

...

DPython

Code Generation

Ô
1000 tests

Verifier

20%

...

0%

100%

Code Verification

Fig. 2: Code Generation and Verification

Table 1: Selected problems for evaluation. PN stands for the problem number,
Level shows Computer Science course level, and DA stands for online description
availability. Column Comments describes the algorithm of each problem.
PN Problem Level DA Comments
P1 Temperature CS1 ✓ Rainfall problem [15] variant
P2 Sorting CS1 ✗ Sorting of string and numeric values
P3 Shortest Path CS1 ✓ Minimum path via intermediate stations
P4 Boxes CS5 ✗ Bin-packing problem
P5 TSP CS5 ✗ Traveling salesman problem
P6 Outlets CS5 ✗ Minimum spanning tree
P7 Cow Game CS5 ✓ Shortest path in grid with obstacles
P8 Dice CS5 ✓ Shortest path in graph given allowed moves
P9 Traveling CS5 ✓ All shortest paths with constraints
P10 TV-Zapping CS5 ✓ Minimum increment to match inputs with constraints
P11 Cut Boards CS4 ✓ Dynamic Programming
P12 Train Shunting CS4 ✓ Similar to Tower of Hanoi

the problem corresponds to (third column), and finally, whether the description
is available online (forth column). The fifth column provides a brief description
of the underlying algorithm.

First, we selected three problems at the introductory CS level as the baseline.
Two of the problems, P1 and P3 are lab assignments from a CS1 course, Pro-
gramming I at KTH Royal Institute of Technology in Sweden. P1, Temperature,
is a variant of the Rainfall problem [15]. P3 To minimize the chance that the
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LLM that we use is trained on the actual problem solutions, we introduced an
additional problem that was handwritten by two of the authors of this paper
and consists of sorting a list of people.

Subsequently, we selected a set of nine problems in advanced programming
courses, in particular, CS4 and CS5 courses. The selected problems have clear
textual descriptions that allow the selected LLMs to find solutions. Three of
the problems, Boxes, TSP, and Electrical Outlets are part of the teaching
material, including lecture notes and assignments, in a CS5 course, Algorithms,
Data Structures, and Complexity taught at KTH Royal Institute of Technology.
Boxes is an instance of the bin-packing problem (see Section 3), TSP is an instance
of the traveling-salesman problem, and Outlets is a minimum-spanning tree
problem.

Four of the problems, the Cow Game, Dice, Traveling, and TV-Zapping are
taught in a CS5 course on Programming Languages I at the National Technical
University of Athens in Greece. The TSP was rewritten as a teacher handing
out tests in a classroom rather than a salesman traveling between cities, as it is
a classic CS problem with many available implementations. Cow Game is a path-
finding problem in a grid under time-induced constraints. Dice is a shortest-path
graph problem with the constraint of each move having to use specific predefined
dice values. Traveling is a shortest-path problem from a source to all destina-
tions given that the last edge of the shortest path to each destination becomes
unusable. TV-Zapping is the problem of converging a number of values (chan-
nels) to the same value (channel) given the constraint than one channel cannot
change two consecutive times. For these problems the assignment descriptions
are available online, but we were not able to find any of the solutions in GitHub
or other repositories. It is worth noting that the teachers of this course specify
that the students should not upload their solutions online.

The last two problems, Cut Boards and Train Shunting, are problems that
are part of a CS4 course, Programming II at KTH. Cut Boards is the problem
of finding the optimal cutting order of a board in smaller parts with goal to
minimize the cutting cost. The problem is designed to be solved with dynamic
programming, but can also be solved with a greedy algorithm. Train Shunting
is a problem of performing a set of moves to change the order of wagons in a
train. Given three stations, a number of wagons and their initial and desired
order, as well as a description of the allowed moves, the task is to rearrange
the train by only performing valid moves. The problem is similar to the famous
Tower of Hanoi problem, and the constraint lies in rearranging the train wagon
order, only using valid moves.

4.3 Code Generation

The next step in the evaluation is creating the prompt text from the selected
problems and requesting the LLM tools to generate code.

The prompts for every problem description (LLM prompt) consist of three
parts. The first part is the problem description, explaining the problem that
the generated code should solve. Figure 1 shows the problem description for the
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Boxes problem. The second part describes how the input text for a problem
instance is formatted. For the Boxes problem the input part is the following:

The input will be given to standard input in this order: The first row contains
the weight capacity of the boxes. The second row contains the number of
items. The following rows contain the weight of each item.

The last part describes the expected output for a problem instance. Stan-
dardized input and output for the generated problems allow for automating the
testing of the code.

The output should be printed to standard output in this order: The number
of boxes needed to carry all the items.

Figure 2 shows the code generation part in the left most box. We provide
the three-part prompt as input to the selected LLMs, GitHub Copilot (Copilot
in Figure 2), CodePal, and two models, Llama3-70b and Mistral-Nemo-Instruct-
2407, from Hugging Face (HF in Figure 2). We ask each of the LLMs to generate
code in Python, Java, and C.

Note, that we applied some minor changes to the LLMs-generated solutions
to run through the verification process. Table 3 in Appendix A lists all the
generated solutions that required changes and the change they required. None
of these changes alters the algorithm of the generated code.

4.4 Code Verification

Figure 2 shows the code verification part of the evaluation (right-most box).
Given the generated programs by the four LLM tools, we generate 1000 random
test cases for each of the twelve problems. The test cases for each of the LLM
solutions use the same random seed. We run each ACG-generated program sep-
arately for each test case, and the answer given by the program is recorded and
verified using our reference solution, the Verifier (Figure 2). From the collected
answers, we report how many test cases were correct for each generated program
and how many cases where wrong. The output of the Verifier is the accuracy of
the generated code based on Definition 1.

Definition 1 (Accuracy). Accuracy is the number of correctly solved test cases
s, divided by the total number of test cases, t expressed as Accuracy = s

t . In this
experiment t = 1000.

In the Boxes problem (Section 3), the accuracy of the GitHub Copilot so-
lution is 75.4%. The structure of the verification algorithm varies depending on
the type of problem. Certain problems have a single correct answer. For these
problems, the verification consists of calculating the correct answer from the in-
put data and comparing the LLM result to the correct answer. To account for
rounding errors in floating point results, the Verifier accepts any answer up to one
decimal point far from the correct answer as correct. Other problems have many
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possible valid answers, such as the Traveling Salesman Problem (TSP) problem.
For these problems, our verification step checks each aspect of the given answer,
such as verifying all nodes exist in a path and that bounds are not exceeded.
The verification algorithm that checks the Boxes problem (see Section 3), uses
an exhaustive search to check the solutions that LLMs generate.

We define a problem correctly solved, when the accuracy is 100%.

Definition 2 (Correctness). A problem is correct when the accuracy is 100%,
namely Accuracy = 1.

5 Evaluation

Table 2: Evaluation results for each of the problems, LLM tools, and program-
ming languages. GC stands for Github Copilot, CP stands for CodePal, HF
stands for Hugging Face, LL stands for Llama, and MS stands for Mistral. RE
stands for run-time error, IL stands for infinite loop, and CE stands for compi-
lation error. All values are in %.

PN
Python Java C

GC CP HF GC CP HF GC CP HF
LL MS LL MS LL MS

P1 100 100 100 RE 96.9 RE 100 96.9 100 100 100 96.9
P2 100 100 100 100 100 0 100 0 100 100 100 0
P3 100 100 100 100 100 100 100 100 100 100 100 100
P4 75.4 71.2 71.2 32.3 71.2 71.2 71.2 32.3 75.4 75.4 71.2 CE
P5 100 0 RE 0 100 0 CE 0 0 0 0 CE
P6 0 0 0 RE 0 RE 0 RE 0 0 0 CE
P7 IL 0 0 7.4 1.7 51.9 0 7.4 77.4 0 0 2.1
P8 23.7 23.7 6.3 RE 23.7 23.7 6.3 RE 23.7 RE RE CE
P9 0 13.9 0 0 1.1 0 0 RE 13.9 CE RE CE
P10 1.3 96.4 1.4 RE 1.4 1.4 1.4 0.3 96.4 3.0 1.4 CE
P11 100 0 0 0 0 0 0 0 0.1 0 0 CE
P12 0 IL IL 0 0 IL CE 0 0 0 CE 0

This section presents the results of the evaluation of the selected LLM tools
(see Table 1). Table 2 summarizes the results of the evaluation. For each of prob-
lems, P1 to P12, Table 2 shows the accuracy (see Definition 1) of the generated
source code for each of the targeted programming languages and each of the
LLM tools. To evaluate RQ1, we compare the results that are correct in Ta-
ble 2. To evaluate RQ2, we examine how good are the LLM tools at recognizing
the algorithm or parts of the algorithm for each problem. To evaluate RQ3, we
compare the results for the different programming languages anad LLM tools.
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5.1 RQ1: How effective are LLM tools at solving advanced
programming assignments correctly?

The results in Table 2 show the accuracy of each generated problem. The prob-
lems that are correct (see Definition 2) are colored green in Table 2. The results
in Table 2 show that there is a clear difference between the baseline CS1 prob-
lems, P1 to P3, and the problems from more advanced courses, P4 to P12. In
particular, for P1, we have six out of the twelve solutions correct, and three of
them have accuracy 96.9%. The lower accuracy in the last three cases depends
on wrong usage of the minimum value for double numbers in Java and C, where
the value is 0 and not -inf as the algorithm requires. For problem P2, which
sorts a combination of strings and integers, the failed cases depend on input read
mistakes for CodePal and Mistral in Java and wrong sorting order for Mistral
in C. Problem P3 is correct for all LLMs.

Among P4 to P12, only P4, TSP and P11, Cut Boards, have two and one
correct results, respectively. In all these cases, Github Copilot is the LLM that
generates correct results. For the Cow Game problem, Github Copilot’s solution
for C gives accuracy 77.4%. Listing 3a shows the error of the generated solution
and Listing 3b shows the corrected solution. This error depends on wrong inti-
tialization of the input data. In particular, assignment grid[x-1][y] = t; that
sets the time unit at which the specific grid position is marked should instead be
grid[x-1][y] = min(grid[x-1][y], t); to consider possible previous mark-
ings.

1 for (i = 0; i < n; i++) {
2 ...
3 grid[x][y] = t
4 if (x > 0)
5 grid[x-1][y] = t;
6 ...
7 }

(a) Generated Code

1 for (i = 0; i < n; i++) {
2 ...
3 grid[x][y] = min(grid[x][y], t);
4 if (x > 0)
5 grid[x-1][y] = min(grid[x-1][y], t);
6 ...
7 }

(b) Corrected Code

Fig. 3: Cow Game: Generated code by Github Copilot in C and corrected code.

Summary The ability of LLMs to generate correct solutions in advanced CS
problems compared to CS1 problems is low. Among all LLMs Github Copilot is
the only tool that is able to generate correct results.

5.2 RQ2: What is the capability of LLM tools at identifying the
problem to solve?

This research question investigates the ability of LLM tools to identify the prob-
lem that the prompt describes or provide useful information and partial solutions
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to students. In Table 2, we focus on the results that have partially correct answers
or accuracy lower than 100% but higher than 0%.

For problem P4, the Boxes problem (see Section 3), all LLM solutions in
Table 2 are implementations of heuristics that approximate the result. The LLMs
seem to recognize the problem but only provides suboptimal greedy solutions
rather than following the prompt instructions.

When examining the solutions for P6, the Outlets problem, we can see that
some solutions have functions and comments that refer to minimum spanning
tree (MST), which is the correct algorithm to solve this problem. Copilot’s solu-
tions in Python and C both reference MSTs and all three solutions generated by
Llama contain a function named prim, a reference to Prim’s algortihm, which
finds the MST. This indicates that these solutions have correctly identified the
underlying problem. However, none of them is able to solve any instance of the
problem correctly. We found that this was mostly due to the specific constraints
of the tree’s intended root as specified in the prompt.

Problem P7, the Cow Game problem, has two solutions, one from Github Copi-
lot and the other from CodePal with accuracy above 50%. The Java solution from
CodePal finds the shortest path to the destination cell in a grid, without con-
sidering the obstacles. In Github Copilot’s C solution, the algorithm is correct,
but when reading the input code, the implementation overwrites obstacles (see
Listing 3a).

Is P8, the Dice problem, seven solutions achieve an non-zero accuracy > 0
and five solutions achieve 23.7% accuracy. The latter solutions find the shortest
path to the destination node in a graph without considering the constraints
implied by the dice, namely the allowed steps.

Problem P9, Traveling problem has two solution that achieve 13.9% accu-
racy. Here, both solutions implement the same algorithm that finds the second
shortest paths. However, the problem requests for the shortest path after re-
moving one edge of the initial graph that belongs to the original shortest path.
Similar to the previous cases, here, the two LLMs recognize the algorithm but
ignore some more problem specific constraints and instructions.

Problem P10, TV-Zapping problem, includes two solutions that have a very
high accuracy, 96.4%. These solutions solve the main problem, but miss a con-
straint given in the prompt. That is, it is not allowed to increase one of the
inputs two times subsequently.

Problem P11, Cut Board, was an exercise in dynamic programming. Almost
all LLMs try to solve the problem using dynamic programming, but fail to
generate correct code to achieve this. The only solution that is correct uses a
greedy algorithm.

Finally, in problem P12, or Train Shunting, which is similar to The Towers
of Hanoi problem, none of the LLMs solves the problem and many LLMs gen-
erate solutions that result in infinite loops or compilation errors.

Summary The evaluation shows that many LLMs generate solutions that use
heuristics instead of full solutions, solve the problem ignoring some constraints,
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or recognize the algorithm but fail in the implementation (e.g. Dynamic Pro-
gramming). This is an insight that may be useful for teachers that want to design
problems that require understanding and personal effort from the students.

5.3 RQ3: How does the choice of LLM tool and programming
language affect source-code generation?

The choice of language affects the result to some extent. In Table 2, LLM tools
fail to generate functional C code. In particular, 12 solutions result in either
compilation or runtime errors. However, Github Copilot (GC) provides partial
solutions in C for P7 to P10. Python and Java have eight solutions each that
result in errors, and different LLMs produce non-runnable code for P1. In terms
of generating partly correct solutions for advanced problems, P4 - P12, we look
at solutions with accuracy > 5%. LLMs produced twelve solutions with Python,
ten with Java, and seven with C that partially solved the problems.

To compare the LLM tools, we see in Table 2 that GC performs the best,
followed by CodePal (CP). Out of 36 solutions, GC produces only a single non-
functional solution, this is for P7, where GC’s Python solution results in an
infinite loop. Solutions produced by CP are failing to a larger extent, while
Llama and Mistral generate a larger number or non-functional solutions. Another
interesting insight is that it seems that CP in Python generates the same heuristic
as CG in C, for problems P8 - P10.

6 Limitations and Future Work

In this paper, we have not performed extensive prompt engineering but rather
used the original or slightly modified exercises as provided in the respective
course. It is possible that prompt engineering may improve the results of LLMs
in advanced courses. We leave this as a future work.

The development and improvement of LLM tools is constant, which requires
continuous effort to evaluate their capabilities and the effect of their use on CS
education. We believe that there is a need to adjust CS course assessments for
a fair assessment of the students’ knowledge.

7 Conclusion

In this paper, we investigate the capabilities of LLM tools to solve advanced
programming assignments. Our results indicate that compared to introductory
course assignments, LLM tools struggle to generate correct source code for ad-
vanced assignments. However, the tools are often able to recognize the algo-
rithm needed to solve the assignment. Our analysis on partially correct results
shows that LLMs have difficulty adjusting known algorithms to specific con-
straints and often tend to implement popular heuristics instead of following the
prompt instructions. We believe that teachers may use these insights to assess
the knowledge of students in advanced CS courses by incorporating variations
or constraints to known algorithms in advanced programming assignments.
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A Changed solutions

We made some small alterations to the LLM-generated solutions before the tests.
Changes to a solution depend on one of the following three reasons, 1) to make
the program running, 2) the generated solution contained a running algorithm
but required minor changes to the output to pass the verification algorithm, and
3) to lower the runtime of the programs. No changes were made to the algorithms
of the solutions.

Table 3 list all solutions that had some changes made before running the
tests. There were four different types of changes made. The most common change
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was changes to how the solution printed the answer to a problem instance, as
the LLMs often include descriptions in their outputs. Another change regarding
the solution outputs was from floating point to integer variables. This made
the output of the solutions integers instead of .0 vales, aiding parsing in the
verification of the output. The change that occurred on multiple solutions was
lowered constants to reduce the runtime of the solutions, most common in the
P7. These programs did extensive searches on grids larger than needed, causing a
long runtime that was cut down by lowering these limits closer to the maximum
test values.

Table 3: Changes made for LLM generated solutions before running the evalu-
ation tests. Output format indicate changes to the result printing. Float to int
indicate the solution used floating point variables when only integer was needed.
Lowered constants indicates values being lowered to reduce search sizes. Added
imports indicate that some missing imports needed for compilation was added.
Lastly main() call indicates a call to the main funtion was added.

Problem LLM Language Change
P1 Codepal C Output format
P2 Llama C Float to int
P2 Llama Java Float to int
P2 Llama Python Float to int
P2 Mistral Python Float to int
P3 Copilot C Output format
P3 Copilot Python Output format
P3 CodePal C Output format
P3 CodePal Java Output format
P3 CodePal Python Output format
P3 Mistral Python main() call
P7 Copilot C Lowerd constants
P7 Codepal C Lowerd constants
P7 Llama C Lowerd constants
P7 Llama Java Lowerd constants
P7 Llama Python Lowerd constants
P9 Copilot C Lowerd constants
P9 Mistral Java Added import
P9 Llama Python Output format
P10 CodePal C Output format
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