
Thwarting Code-Reuse and Side-Channel Attacks in Embedded
Systems
Rodothea Myrsini Tsoupidia,∗, Elena Troubitsynaa and Panagiotis Papadimitratosa
aRoyal Institute of Technology KTH, Stockholm, Sweden

ART ICLE INFO
Keywords:
compiler-based mitigation
automatic software diversification
software masking
constant-resource programming
secure compilation

ABSTRACT
Embedded devices are increasingly present in our everyday life. They often process critical in-
formation, and hence, rely on cryptographic protocols to achieve security. However, embedded
devices remain particularly vulnerable to attackers seeking to hijack their operation and extract
sensitive information by exploiting side channels and code reuse. Code-Reuse Attacks (CRAs) can
steer the execution of a program to malicious outcomes, altering existing on-board code without
direct access to the device memory. Moreover, Side-Channel Attacks (SCAs) may reveal secret
information to the attacker based on mere observation of the device. Thwarting CRAs and SCAs
against embedded devices is especially challenging because embedded devices are usually resource
constrained. Fine-grained code diversification can hinder CRAs by introducing uncertainty to the
binary code; while software mechanisms can thwart timing or power SCAs. The resilience to either
attack may come at the price of the overall efficiency. Moreover, a unified approach that preserves
these mitigations against both CRAs and SCAs is not available. In this paper, we propose a novel
Secure Diversity by Construction (SecDivCon) approach that tackles this challenge. SecDivCon is
a combinatorial compiler-based approach that combines software diversification against CRAs with
software mitigations against SCAs. SecDivCon restricts the performance overhead introduced by the
generated code that thwarts the attacks and hence, offers a secure-by-design approach enabling control
over the performance-security trade-off. Our experiments, using 16 benchmark programs, show that
SCA-aware diversification is effective against CRAs, while preserving SCA mitigation properties at a
low, controllable overhead. Given the combinatorial nature of our approach, SecDivCon is suitable for
small, performance-critical functions that are sensitive to SCAs. SecDivConmay be used as a building
block to whole-program code diversification or in a re-randomization scheme of cryptographic code.

1. Introduction
Nowadays, numerous embedded devices, sensors and

Internet of Things (IoT) devices process and control a large
variety of sensitive information. They are typically resource-
constrained and vulnerable to attacks that aim to manipulate
their operation and/or extract sensitive information [50].
Memory corruption vulnerabilities induce a serious security
threat. Mitigations such as data execution prevention have
eradicated code injection attacks. Nonetheless, Code-Reuse
Attacks (CRAs) achieve hijacking the control flow of a
program using a chain of executable code snippets [62,
57]. These attacks target both general purpose [62] and
embedded devices [52, 32, 9, 59]. At the same time, the
execution of embedded software may leak information about
sensitive data to the adversary via side channels [43, 21, 22].
Side-Channel Attacks (SCAs) allow an attacker to extract
information from the target device by recording side-channel
information, such as execution time or power consumption,
which may depend on secret values.

Mitigating CRAs and SCAs is a double-edged challenge.
In the literature, there are solutions tailored to each of
these attacks for embedded devices. However, there are
two main drawbacks associated with combining individual
mitigations. First, there is no guarantee that the sequen-
tial application of the mitigations preserves the properties

tsoupidi@kth.se (R.M. Tsoupidi); elenatro@kth.se (E.
Troubitsyna); papadim@kth.se (P. Papadimitratos)

ORCID(s): 0000-0002-8345-2752 (R.M. Tsoupidi);
0000-0002-3267-5374 (P. Papadimitratos)

of each of them (see Section 2.1). Second, the mitigation
result may accumulate the introduced overhead from each
approach [21], which may be resource-forbidding, and thus,
creates the need for overhead-aware approaches [71, 69].

In this paper, we address this challenge by proposing
a novel approach that combines fine-grained code diver-
sification against CRAs with software mitigations against
SCAs. Fine-grained code diversification [59] is a mitiga-
tion against CRAs that introduces uncertainty to the binary
code implementation, which makes the attacker payload
nonfunctional. An important advantage of fine-grained soft-
ware diversification compared to other mitigations against
CRAs is its reduced performance overhead [51, 69]. Typical
mitigations against SCAs include software countermeasures
that prohibit the flow of secret information to the attacker,
such as software masking and Constant Resource (CR) pro-
gramming (see Section 2.1). The compilation process may
not propagate correctly these software mitigations and, thus,
the compiler needs to be aware of these properties.

Secure Diversity by Construction (SecDivCon) is a com-
binatorial compiler-based approach that combines code di-
versification against CRAs with mitigations against Timing
Side Channel (TSC) and Power Side Channel (PSC) attacks.
Moreover, SecDivCon uses an accurate cost model for pre-
dictable architectures that allows control over the overall per-
formance overhead of the generated code. SecDivCon is ap-
propriate for diversifying small cryptographic core functions

Tsoupidi et al.: Preprint submitted to Elsevier Page 1 of 17



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

that may impose security threats through SCAs. Function-
level diversification may be used for whole-program diver-
sification [69] or in a re-randomization scheme [64] against
advanced code-reuse attacks [8].

This paper contributes with:
• an entirely novel (to the best of our knowledge)

composable framework that combines automatic fine-
grained code diversification and side-channel mitiga-
tions;

• a constraint-based model to generate optimized code
against TSCs (Section 3);

• a secure-by-design compiler-based approach that pre-
serves the properties of multiple software mitigations
and enables control over the trade-off between perfor-
mance and security (Section 4);

• evidence that fine-grained automatic code diversifica-
tion introduces side-channel leaks (Section 4.2);

• evidence that restraining diversity to preserve security
measures against SCAs does not have a negative effect
on CRA mitigations (Section 4.5).

Reproducibility: The source code and the evaluation pro-
cess are available online: https://github.com/romits800/

secdivcon_experiments.

2. Problem Statement and Threat Model
Section 2.1 presents the attacks that we consider and

motivates our approach, which combines security mitiga-
tions against CRAs and SCAs. Section 2.2 presents the threat
model, and finally, Section 2.3 defines the problem.
2.1. Background and Motivation
Code-Reuse Attacks (CRAs): CRAs exploit memory cor-
ruption vulnerabilities to hijack the control flow of the victim
program and take control over the system [17, 9, 28]. The at-
tacker selects pieces of executable code from the victim pro-
gram memory, so-called gadgets, and stitches these gadgets
together in a chain that results in a malicious attack. Code-
reuse gadgets typically end with a control-flow instruction,
such as indirect branch, return, or call, which allows the
attacker to build a chain of gadgets. Figure 1a shows a code-
reuse gadget that we extracted using ROPGadget [60] from
an ARM Cortex M0 binary. At address 0x0044, the gadget
copies the value of r2 to register r0 (line 1), then jumps to
the next instruction (line 2) and finally, jumps to the value of
register lr to the next gadget. As demonstrated in Figure 1a,
code-reuse gadgets consist of common instruction sequences
that are frequently available in compiled programs.

The main approaches against CRAs are Control-Flow
Integrity (CFI) and code randomization. CFI [1] enforces
the dynamic execution of the program to conform with the
permitted execution paths, whereas automatic code diver-
sification [38] introduces uncertainty to the location and

1 0x0044 : mov r0 , r2

2 0x0046 : b #0x48

3 0x0048 : bx lr

(a) Gadget 1

1 0x0044 : mov r0 , r3

2 0x0046 : bx lr

3 0x0048 : ...

(b) Gadget 2

Figure 1: Two diversified gadgets in ARM Thumb extracted
from Figure 4 using ROPGadget

1 u32 Xor(u32 pub , u32 key , u32 mask) {

2 u32 mk = mask ^ key;

3 u32 t = pub ^ mk;

4 return t;

5 }

(a) Original C code

2 u32 t1 = pub ^ key;

3 u32 t2 = mask ^ t1;

4 return t2;

5 }

(b) Compiler-induced masking
removal

Figure 2: Masked exclusive OR implementation

instruction sequence of the gadgets in the program mem-
ory. CFI may be impractical for small, resource-constrained
devices due to the diversity of embedded hardware and
the increased overhead [48] in small, often battery-operated
devices. Automatic software diversification provides an effi-
cient mitigation against CRAs [38, 69, 52]. Figure 1 shows
two gadgets in two diversified program variants. Figure 1a
and 1b illustrate that they differ in the first instruction, which
copies the content of the register r2/r3 to r0. An attacker that
has designed an attack that uses the first gadget at address
0x0044 to move an attacker-controlled value from r2 to r0will
fail if the victim uses the second gadget. There are different
ways to diversify software and distribute it to the end users.
In this paper, we consider the app store model [38], where a
centralized repository distributes precompiled code variants
to each end user.
Side-Channel Attacks (SCAs): Usually, embedded de-
vices use cryptographic algorithms, which are vulnerable
to SCAs [35, 43, 11]. These attacks allow the adversary
to extract information about secret values by measuring the
execution time – called timing side channel (TSC) [14] or the
power consumption – called power side channel (PSC) [54]
of the target device. For example, a publicly installed camera
or a smartwatch may be physically exposed to malicious
actors that are able to measure the power consumption of the
device or the execution time of cryptographic tasks to infer
cryptographic keys and retrieve information about sensitive
data.
Power Side Channels (PSCs): PSC attack is a SCA that
uses the power traces of the target device to extract secret
information [74]. A mitigation approach to protect against
PSCs is software masking. Consider the code in Figure 2a.
Function Xor applies software masking to an exclusive or
(xor) operation. The program takes three inputs, pub, which
is a public value, key, which is a secret value, and mask,
which is a randomly generated value. At line 2, the code
performs an exclusive or operation between mask and key to

Tsoupidi et al.: Preprint submitted to Elsevier Page 2 of 17

https://github.com/romits800/secdivcon_experiments
https://github.com/romits800/secdivcon_experiments


Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

1 @ r0: pub , r1: key , r2: mask

2 eors r1 , r2

3 eors r0 , r1

4 bx lr

(a) Secure

2 eors r2, r1

3 eors r0 , r2

4 bx lr

(b) Insecure

Figure 3: Two program variants of Figure 2a for ARM Cortex
M0

randomize the secret value. At line 3, the implementation
performs an additional exclusive or operation between the
previous result and value pub. Figure 3 shows two machine
implementations of the code in Figure 2a in ARM Thumb.
The first implementation in Figure 3a performs the first xor
operation at line 2 and stores the result in register r1 and
the then, performs the second xor operation at line 3 and
stores the result in register r0. The second implementation
in Figure 3b is identical to the first one, apart from the first
xor operation at line 2, where the result is copied to register
r2. The power leakage of the program depends on register-
value transitions, Register-Overwrite Transition (ROT) [49],
based on the Hamming Distance (HD) model [11], which is
widely used for designing PSC attacks and defenses [11, 49].
The leakage using the HD model depends on the exclusive
or of the previous value of a register and the new value.
Thus, as shown in Figure 3a, the leakage depends on two
transitions of registers r0 and r1, with values r1old⊕r1new =
key ⊕ (key ⊕ mask) = mask and r0old ⊕ r0new = pub ⊕
(key⊕ mask⊕ pub) = mask⊕ key. None of the values depends
on a secret value because both values are randomized with
mask. However, in Figure 3b we have a different leakage,
r2old⊕r2new = mask⊕(key⊕mask) = key and r0old⊕r0new =
pub⊕ (key⊕ mask⊕ pub) = mask⊕ key. The first value leaks
information about the key, which is secret (highlighted in
Figure 3b). This means that the implementation in Figure 3b
leaks secret information. Thus, the embedded devices that
use this variant may be vulnerable to PSCs. Notice that
these leaks correspond to the implementation of the code
in Figure 2a. If the compiler middle-end takes advantage
of the associativity property of the exclusive-or operation to
change the order of the exclusive-or operations, as we see in
Figure 2b, then, there will be a leak regardless of the register
allocation (see Section 3.1.3).
Timing Side Channels (TSCs): TSC attack is another
type of SCA, where the attacker measures the execution time
during the execution of a program to infer secret information.
For example, Figure 4 shows a simple program that contains
a timing vulnerability. In particular, at line 3 there is a branch
that compares the value of key and the value of pub. The
attacker knows and may control the value of pub, whereas
key is a secret value. If the result of the comparison is true,
then the observed execution time will be longer than when
the result is false. Thus, an attacker who can measure the
execution time of the code and knows the value of pub is
able to infer information about the value of key.

1 u8 check_bit(u8 pub , u8 key) {

2 u8 t = 0;

3 if (pub == key) t = 1;

4 return t;

5 }

Figure 4: Program with secret-dependent branching

The Constant Resource (CR) policy is a software-based
mitigation approach against TSC attacks that aims at elim-
inating timing leaks [47]. The CR policy allows secret-
dependent branches, as long as the different execution paths
require the same execution time. The implementation of
CR code is hardware specific because the same instruction
may take a different number of cycles in different processor
implementations. Figure 5 shows two machine implementa-
tions for ARM Cortex M0 that preserve the CR policy of
the program in Figure 4, where the if branch in Figure 4
is balanced with an else branch. In Figure 5a, the first basic
block (lines 3-5) initializes t (line 3) and compares these two
input values (lines 4-5). If the result of the comparison is
true (taken branch), the execution jumps to the third branch,
.LBB0_2, and the branch operation takes three cycles. If the
result of the comparison is false (not-taken branch), the exe-
cution continues to the second branch (@BB#1) and the branch
operation takes just one cycle. To balance the two branches,
the code generation considers the branch overhead for taken
branches and the latency of every instruction, which is three
cycles for the unconditional branch, b, and one cycle for the
move instruction, mov. In particular t(@BB#1)+2 = t(.LBB0_2),
where t(b) is the execution time of the body of basic block
b and +2 corresponds to the branch overhead on a taken
branch. Figure 5b shows another machine implementation of
the code in Figure 5a that also preserves the same constraint
as Figure 5a. The main differences in Figure 5b concern
the register assignment. For example, Figure 5b introduces
additional mov instructions (lines 8, 11, and 12) to transfer
values from one hardware register to another. Without the
constraint that enforces the equality of execution time for
the two branches, a randomization procedure, may break the
CR policy, for example, by adding one No Operation (NOP)
instruction in .LBB0_2.
Combined Mitigation: Embedded devices that handle
sensitive data are vulnerable to both SCAs and CRAs.
Mitigating SCAs and CRAs in these devices is essential for
protecting sensitive data and the system. A low-overhead
approach against CRA is fine-grained code diversification,
while software mitigations hinder SCAs in cryptographic
software. Avoiding diversifying cryptographic libraries may
lead to CRAs, as shown in recent work by Ahmed et al. [3],
where a CRAs attack may use gadgets from OpenSSL, a
cryptographic library. Similarly, diversifying cryptographic
code may break software mitigations against SCAs, as we
show in Section 4.2. The latter demonstrates that fine-
grained code diversification against CRAs and software

Tsoupidi et al.: Preprint submitted to Elsevier Page 3 of 17



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

1 @ r0: pub , r1: key

2 @ BB#0:

3 movs r2 , #0

4 cmp r1 , r0

5 bne .LBB0_2

6 @ BB#1:

7 movs r0 , #1

8 b .LBB0_3

9 .LBB0_2:

10 mov r0 , r2

11 movs r1 , #1

12 .LBB0_3:

13 bx lr

14 ...

15 ...

(a) Secure variant 1

2 @ BB#0:

3 movs r2 , #0

4 cmp r1 , r0

5 bne .LBB0_2

6 @ BB#1:

7 movs r3 , #1

8 mov r0 , r3

9 b .LBB0_3

10 .LBB0_2:

11 mov r3 , r2

12 mov r0 , r3

13 movs r3 , #1

14 .LBB0_3:

15 bx lr

(b) Secure variant 2

Figure 5: Two secure program variants of Figure 4 for ARM
Cortex M0

mitigations against SCAs constitute conflicting mitigations.
Therefore, there is a need for combined approaches that
protect against the combination of these attacks.

Figures. 3 and 5 show two different machine-code im-
plementations of programs in Figures 2 and 4, respectively.
Each of these functions includes code-reuse gadgets that
end with instruction bx lr. An attacker may select these
gadgets to perform a CRA. Generating multiple versions
of each program is a form of diversification that hinders
attacks by altering the attacker’s building blocks. At the
same time, these variants should preserve SCA mitigations.
For example, the variant in Figure 3b is not secure against
PSC attacks. To tackle this problem, we propose SecDivCon,
which generates diverse variants protected against CRAs
that are also secure against SCAs.
2.2. Threat Model

We assume that the code implementation contains a
memory vulnerability that allows the attacker to perform a
CRA, in particular a static Return Oriented Programming
(ROP) or Jump Oriented Programming (JOP) attack. We
further assume that the attacker does not have direct access to
the memory of the device. We consider two types of attacker
models for SCAs, Timing Attacker (TA) that measures the
execution time of the program and Power Attacker (PA) that
records the power consumption of the program:
TA: The attacker has access to the software implementa-

tion and the public data but not the secret data. The
attacker extracts information about the secret data by
measuring the execution time of the code on the target
device. The measurements are done remotely.

PA: The attacker has access to the software implementation
and the public data but not the secret data. At every
execution, the program under execution generates new
random values and the attacker has no knowledge of
these values. The attacker extracts information about

crypto.c

sec pol.txt

CF

SA

SecDiv

SecSolv

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

...

SecDivCon

source
code

optimal solution

security
policy

Figure 6: High-level view of SecDivCon

the secret data by measuring the power consumption
of the device that the code runs on. The attacker may
accumulate a number of power traces from multiple
runs of the program and perform statistical analysis,
such as Differential Power Analysis (DPA) [34] or
Correlational Power Analysis (CPA) [11, 49].

We adopt the leakage model for PSCs from Tsoupidi et al.
[70] and the leakage model for the CR-policy from Barthe
et al. [6].
2.3. Problem Statement

Our goal is to generate code secure against the attacker
models TA and PA. First, we define formally code diversi-
fication. We consider a program p and a set, S, of program
implementations, pi ∈ S, that are functionally equivalent
(∼) with the original program, i.e. ∀pi ∈ S.p ∼ pi and each
other, ∀pi, pj ∈ S.pi ∼ pj . To protect against SCAs, we
define a set of constraints Csec . A program implementation
pi is secure against SCAs (PSC or TSC attacks) if pi ∈
sol(Csec).To protect small embedded devices that are vulnerable
to CRAs and SCAs, SecDivCon generates a pool of diverse
solutions, Ssec , that is a subset of S, and all solutions are
secure against SCAs, namely they satisfy Csec , or pi, pj ∈
Ssec ⊆ S ⟹ pi, pj ∈ sol(Csec) ∧ pi ∼ pj , The goal ofSecDivCon is to generate set Ssec .

3. SecDivCon
SecDivCon uses a combinatorial compiler backend to

combine SCA mitigations with code diversification against
CRAs. Figure 6 shows a high-level view of SecDivCon. The
input to SecDivCon is 1) the security policy, namely which
input values are secret, public, or random, and 2) the input
function in a low-level intermediate representation generated
by a general purpose compiler frontend (CF).

The first stage of SecDivCon is the Security Analysis
(SA) module (Section 3.1), which performs code analysis
and generates the input data for the second stage, SecSolver
(Section 3.2). SecSolver solves the SCA-aware constraint-
based backend model and generates the best-found solution
according to the cost function. Then, SecSolver passes this
solution together with the constraint model to the third stage,

Tsoupidi et al.: Preprint submitted to Elsevier Page 4 of 17



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

SecDiv (Section 3.3), a constraint-based diversification
method that generates multiple SCA-aware solutions. The
following sections describe each of the stages of SecDivCon.
3.1. Security Analysis Module

The SA module takes as input the security policy and
the input function (Section 3.1.1). Subsequently, SecDivCon
propagates the security policy to each program term using
type inference (Section 3.1.2). In cases when the input
program is not secure against SCAs, SecDivCon performs
transformations (Section 3.1.3) that enable the generation
of secure code. The output of the analysis is the extended
constraint model of the input program, which includes data
that is necessary for the security constraints (Section 3.2).
3.1.1. Security Policy

SecDivCon takes as input a filename that defines the
security policy of the function under analysis. In particular,
the security policy defines the security type of each function
argument. For example, in Figure 2, we want to define that
1) the data of the first argument is known to the attacker
(Public), 2) the second argument contains secret information
(Secret), and 3) the third argument is a randomly generated
value (Random). SecDivCon takes as input this information in
a file as follows:

Public r0;

Secret r1;

Random r2

Given the definition of the types for the input arguments,
SecDivCon implements a type-inference algorithm at a low-
level intermediate representation format to extract explicit
timing leaks and transitional power leaks.
3.1.2. Type Inference

For both attacker models, TA and PA, SecDivCon uses
type inference to propagate a type, i.e. secret, public, or
random, to each program variable. For example, in Figure 4,
intermediate variable t takes the type public. Similarly, in
Figure 2a, intermediate variables mk and t are assigned type
random (because mask randomizes the value of key). Soft-
ware masking introduces additional challenges to the type
inference algorithm, which has to capture properties such as
(sec ⊕ mask) ⊕ mask = sec. To achieve this, the inference
algorithm uses additional environment structures that keep
track of the random and secret values that an intermediate
variable may contain. The type-inference algorithm that
considers random values is based on previous work [26, 72].
3.1.3. Code Transformations

The implementations of C or C++ programs that are
given as input to SecDivCon may not be secure. Further-
more, the general-purpose middle-end compiler transforma-
tions that SecDivCon uses may break some of the high-
level mitigations. In particular, SecDivCon needs to preserve
the CR property against TA. However, some of the secret-
dependent branches may not be balanced in the source code,
or the high-level compiler optimizations may remove dead

1 u32 check_bit(u32 pub , u32 key) {

2 u32 t = 0;

3 if (pub == key)

4 t = 1;

5 else

6 // nop;

7 return t;

8 }

(a) Add Empty Block

2 u32 _t, t = 0;

3 if (pub == key)

4 t = 1;

5 else

6 _t = 1;

7 return t;

8 }

(b) Copy Unbalanced Block

Figure 7: Balancing transformations for Figure 4

basic blocks [23]. Similarly, SecDivCon needs to generate
secure masked code against PA. The input code is masked,
however, high-level optimizations are known to invalidate
some masking countermeasures [5, 70]. In the following
paragraphs, we discuss the program transformations that
SecDivCon implements before the solving stage protecting
against TA or PA.
Timing Attacker (TA): CR programs may contain secret-
dependent branches. However, these branches should not
result in any execution-time differences. Yet, sometimes,
the source code of the input program contains unbalanced
secret-dependent branches. Figure 4 shows a program that
branches on the secret value (line 3). If the condition is true,
the execution takes at least one cycle (line 4), whereas if
the condition is false, it takes zero cycles. To deal with
these programs, we introduce a transformation that balances
secret-dependent blocks, using two methods: 1) Empty-
Block Balancing (EBB), which inserts an empty block, and
2) Copy-Block Balancing (CBB), which copies the present
secret-dependent block in an else statement.
EBB: To balance an unbalanced secret-dependent block,

EBB adds an empty block that contains NOP opera-
tions. Figure 7a shows a secret-dependent branch that
is balanced using an empty basic block (lines 5-7).
At a later stage, the constraint solver fills this basic
block with an appropriate number of NOP instructions
to balance the secret-dependent branch. In contrast to
CBB, this transformation works also when we want to
balance an unbalanced path with more than one basic
blocks.

CBB: Another way to balance a secret-dependent block that
consists of one basic block is by copying the unbal-
anced block instructions. Figure 7b shows a secret-
dependent branch, where the else branch is a copy of
the if-branch body with inactive instructions. Here,
SecDivCon copies the body of the secret-dependent
branch to a new else body, which contains all the
operations of the original block but assigned to unused
variables (lines 5-7).

Power Attacker (PA): Previous work has shown that high-
level compiler optimizations may break software masking

Tsoupidi et al.: Preprint submitted to Elsevier Page 5 of 17



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

against PSC attacks [5, 70]. For example, Figure 2b shows
the result of high-level compiler optimizations (-O1 to -O3)
on masked code. The code performs first the xor operation
between the public value pub and the secret value key (line
2) and then, performs the second xor operation with the
result of the first and the mask. Performing the operations in
this order fails to randomize the secret value and leads to a
PSC leak at line 2. To mitigate this type of transformation,
SecDivCon transforms the code to the original operand order
(see Figure 2a).
3.2. Security Constraint Model

SecSolv (see Figure 6) takes as input the data from the
SAmodule and applies constraints in order to generate SCA-
aware code. First, we will give an overview of a combinato-
rial compiler backend (Section 3.2.1) and then proceed with
the SCA-aware model (Section 3.2.2).
3.2.1. Constraint-based Compiler Backend

We consider a constraint-based compiler backend that
implements two low-level optimizations, instruction schedul-
ing and register allocation [41]. A constraint model defines
all legal instruction orders and register assignments [40].
More formally, a constraint-based compiler backend may
be modeled as a Constraint Optimization Problem (COP),
P = ⟨V ,U, C,O⟩, where V is the set of decision variables
of the problem, U is the domain of these variables, C is
the set of constraints among the variables, and O is the
objective function. A constraint-based compiler backend
aims at minimizingO, which typically models the execution
time or size of the code.

A program is modeled as a set of basic blocks B. Each
basic block contains a number of optional operations that
may be active or not. An active operation appears in the
final generated binary code, whereas inactive operations are
not present in the final code. A set of hardware instructions
may implement each operation that consists of a number of
operands. Each operand may be implemented by different,
equally-valued virtual registers, which are the result of copy-
ing the content of a register to another register or memory
(copies). The model maps each virtual register to a set of
hardware registers andmemory locations. The solver assigns
each virtual register with one hardware register or memory
location. Every assignment p of the problemc variables that
satisfies the constraints, C , is a solution to P , p ∈ sol(P )
and represents a compiled program.

A typical objective function of a constraint-based back-
end minimizes different metrics such as code size and ex-
ecution time. These can be captured in a generic objective
function that sums up the weighted cost of each basic block:

∑

b∈B
weigℎt(b) ⋅ cost(b).

The cost of each basic block is a variable that differs among
solutions, whereas weight is a constant value that represents
the contribution of the specific basic block to the total
cost. This cost model is accurate for predictable hardware

architectures, such as microcontrollers. These architectures
do not include cache hierarchy, dynamic branch prediction,
and/or out-of-order execution, which reduce predictability.
3.2.2. Side-Channel Mitigation Constraints

The constraint-based solver aims at optimizing code
given an accurate cost model for predictable microcon-
trollers. However, SecDivCon aims at generating SCA-
secure code. Given the constraint problem P = ⟨V ,U, C,O⟩
that describes the combinatorial compiler backend, we
extend the constraints C , with a set of constraints Csec thatcapture the properties of the SCA mitigations. Then, the
problem becomes Psec = ⟨V ,U, C ∪Csec , O⟩ and the goal isto find the solution that optimizes the cost function,O, while
satisfying all constraints. The following paragraphs describe
briefly the constraints for the two attacker models.
Timing Attacker (TA): For TA, the SA module generates
a list of sets of paths, patℎssec . Each element in the list
contains the set of possible paths starting from one secret-
dependent branch. To generate the set of paths SA applies a
path-finding algorithm (see Section A).

The constraints that guarantee the preservation of the
CR policy are based on the paths (patℎssec) that SA pro-
vides to the solver. For each set of paths that depends on a
secret value, we define a constraint balance_blocks, which
guaranties that all paths in the set have the same execution
time.
balance_blocks(patℎssec ):

∀p1, p2 ∈ patℎssec .
∑

b∈p1
cost(b) =

∑

b∈p2
cost(b)

In particular, for each set of paths that depend on a
secret value (seci), we apply the balance_blocks constraint,
i.e. ∀patℎsseci ∈ patℎssec . balance_blocks(patℎsseci ). Inthis case, we have one security constraint, i.e. Csec =
{balance_blocks}.
Power Attacker (PA): The model against PSCs depends
on the constraint model in previous work [70]. This model
focuses on two leakage sources, namely, ROT and Memory-
Remnant Effect (MRE).

ROT leakages occur when there is a value transition in
a hardware register, namely when a new value replaces the
previous value of a register. When this transition depends on
a secret value, we have a secret leak. The constraint model
enforces the absence of these leaks in the generated code
by constraining register allocation. More specifically, for
ROT leaks, SA generates all pairs of intermediate variables,
(t1, t2) ∈ RPairs, that should not be assigned to the same
register (r(t)) subsequently (subseq).
conflict_rassign(RPairs):
∀t1, t2 ∈ RPairs. r(t1) = r(t2) ⟹ ¬subseq(t1, t2)

Similarly, MRE corresponds to a leak when there is a
secret-dependent transition at the memory bus, i.e. when a
load or store operation overwrites the previous value in the
bus. The constraints that ensure secure code generation are
similar with those against ROT and enforce the instruction

Tsoupidi et al.: Preprint submitted to Elsevier Page 6 of 17



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

order of memory operations. In particular, for MRE leaks,
SA generates all pairs of memory operations,
(o1, o2) ∈ MPairs, that should not be scheduled one after
the other (msubseq).
conflict_order(MPairs):

∀o1, o2 ∈MPairs. ¬msubseq(o1, o2)

In this case, we have two security constraints that protect
against ROT and MRE leaks, i.e. Csec = {conflict_rassign,
conflict_order}.
3.3. Secure Code Diversification

Constraint-based diversification [29, 31] aims at gen-
erating different solutions for a given problem rather than
one solution. For optimization problems, there is often the
requirement to generate good or optimal solutions with
regard to the optimality function,O. Constraint-based diver-
sification defines the notion of distance measure, �, which
is a constraint between problem solutions and measures how
different two solutions of the problem are.
3.3.1. Diversification Problem

Given our SCA-aware optimization problem Psec =
⟨V ,U, C ∪ Csec , O⟩, the diversification problem attempts
to find the set of distinct solutions S that are solutions of
P ′
sec = ⟨V ,U, C ∪ Csec⟩ and the distance between the

solutions satisfies �, i.e. S = {p | p ∈ sol(P ′
sec) ∧ ∀p′ ∈

S . p′ ≠ p ⟹ �(p, p′)}.
To generate the set of diverse programs S, SecDiv (see

Figure 6) takes the best solution from the code generation
part and generates multiple solutions using the security-
aware constraint model (SecSolver in Figure 6), similar to
previous work [69]. In particular, SecDiv generates solutions
in the neighbourhood of this solution that satisfy
Copt = O < g⋅o, where g is themaximum allowed optimality
gap and o the cost of the best-found solution.
3.3.2. Diversifying Transformations

The diversifying transformations that SecDiv supports
are 1) hardware register assignment, 2) register copying, 3)
memory spilling, 4) constant rematerialization, 5) instruc-
tion order, 6) NOP insertion, and 7) operand order in two-
address instructions. Hardware register assignment permits
changing the register assignment for instruction operands.
Register copying enables copying the content of a register to
another register for future uses of the register value. Memory
spilling allows copying values from a register to the stack
and from the stack to a register. Spilling affects the size of the
stack and thus leads to stack size diversification, however,
spilling increases execution-time overhead. Rematerializa-
tion allows re-executing an instruction instead of copying its
result. SecDiv may also alter the instruction order as long as
there are not data dependencies and insert NOP instructions
by delaying the issue cycle of an instruction. Finally, SecDiv
may alter the operand order in two-address instructions.

4. Evaluation
The evaluation consists of two parts: 1) the identification

of side-channel vulnerabilities in a diversification tool and 2)
the evaluation of SecDivCon. The evaluation of SecDivCon
focuses on two aspects: a) the effectiveness of the CR-
preserving code generation and b) the effectiveness of SCA-
aware code diversification. Section 4.1 describes the imple-
mentation of SecDivCon, experimental setup, and bench-
marks, while Section 4.2 presents our findings with regard
to SCA vulnerabilities in diversified code. Sections 4.3-4.5
present the evaluation of SecDivCon.
4.1. Evaluation Setup

In the following parts, we present the implementation,
experimental setup, and benchmarks we use to evaluate
SecDivCon.
4.1.1. Implementation

We implement SecDivCon as an extension of Uni-
son [40], a combinatorial compiler backend that uses Con-
straint Programming (CP) [58] to optimize software func-
tions. To do this, Unison combines two low-level opti-
mizations, instruction scheduling and register allocation,
and achieves optimizing medium-size functions with im-
provement over LLVM [40]. SecDivCon takes as input the
function in LLVM’s Machine Intermediate Representation
(MIR) and outputs multiple versions of the function that
satisfy the compiler and security constraints. For generating
PSC-free code, we adapt the model of SecCG [70], which
generates optimal code that is secure against ROT and
MRE leakages. For generating CR code, we implement
the path-extraction algorithm (see Section A) in Haskell
as part of Unison’s presolving process. We implement the
path-balancing constraints (see Section 3.2.2) as part of
the constraint model, which is written using the Gecode
C++ library [27]. SecDivCon combines the SCA-aware
mitigations with a diversification scheme [69] to generate
multiple function variants. We target two architectures, 1)
a generic MIPS32 processor and 2) the ARM Cortex M0
processor [4].
4.1.2. Experimental Setup

All experiments run on an Intel®Core™i9-9920X pro-
cessor with maximum frequency 3.50GHz per core and
64 GB of RAM running Debian GNU/Linux 10 (buster).
We use LLVM-3.8 as the front-end andmiddle-end compiler
for these experiments. We repeat all experiments five times,
with different random seeds (where applicable) and report
the mean value for each metric in the results.
4.1.3. Benchmarks

Our approach concerns programs that handle secret in-
formation and are, thus, vulnerable to SCAs. Therefore, we
have selected eleven masked cryptographic core functions
that may be vulnerable to PSCs [70, 72] and five functions
that exhibit secret-dependent timing variations and are used
in cryptographic context [42]. Table 1 shows the benchmarks

Tsoupidi et al.: Preprint submitted to Elsevier Page 7 of 17



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

Table 1
Benchmark description; Ni is the number of machine instruc-
tions that are input to the compiler backend; Nb is the number
of basic blocks; A stands for ARM Cortex M0; and M stands
for MIPS32; Ip, Is, and Ir is the number of public, secret, and
random input arguments, respectively

Prg Description Ni Nb Input Vars
A M A M Ip Is Ir

P0 SecXor 7 7 1 1 1 1 1
P1 AES Shift Rows 8 8 1 1 0 2 2
P2 Messerges Boolean 11 11 1 1 0 1 2
P3 Goubin Boolean 13 13 1 1 0 1 2
P4 SecMultOpt_wires 18 18 1 1 1 1 3
P5 SecMult_wires 18 18 1 1 1 1 3
P6 SecMultLinear_wires 19 19 1 1 1 1 3
P7 CPRR13-lut_wires 48 48 1 1 1 1 7
P8 CPRR13-OptLUT_wires 48 48 1 1 1 1 7
P9 CPRR13-1_wires 52 52 1 1 1 1 7
P10 Whitening 113 88 1 1 16 16 16
C0 If check (Figure 4) 10 9 3 3 1 1 -
C1 Share’s Value 23 26 6 5 1a 2a -
C2 Mult. Modulo 8 28 24 8 6 1 1 -
C3 Modulo Exponentiation 51 36 7 7 1 2 -
C4 Kruskal 51 55 9 9 1a 3a -
aThe input is an address to an array of secret values

with information about the origin of the function, the func-
tion size in number of instructions (Ni) and the number of
basic blocks (Nb) for ARM Thumb (A) and MIPS32 (M),
and finally, the input variables, (Ip public, Is secret, and Irrandom input variables).
Masked Programs: The masked programs that we use
in this evaluation consist of eleven programs, P0 to P10,
most of which originate from the work by Wang et al. [72].
These benchmark programs consist ofmasked cryptographic
core functions that may be vulnerable to PSC attacks. More
specifically, P0 is a masked exclusive-OR implementation,
P1-P3 are protected by Boolean masking [7], P4-P6 cor-
respond to masked multiplication [56], P7-P9 correspond
to masked S-box for AES [18], and P10 implements key
whitening [7].
CR Programs: For evaluating the CR property we use
Listing 4 and four benchmark programs used by Mantel
and Starostin [42]. The code for these benchmarks in C in-
cluding security-policy annotations is available byWinderix
et al. [73]. The set of benchmark programs includes 1) C0
is simple unbalanced if statement (see Figure 4), 2) C1
computes the total market value of a share from the portfolio
of the user, 3) C2 implements multiplication modulo 8,
4) C3 implements the square-and-multiply modular expo-
nentiation, and 5) C4 implements Kruskal’s algorithm [37]
to compute the minimum spanning tree of a graph. These
implementations are vulnerable to timing attacks [42].

4.2. Side-Channel Vulnerabilities in Code
Diversification

Our approach is based on the intuition that automatic
software diversification transformations may break side-
channel mitigations. To confirm this intuition, we investigate
the effect of code diversification using a freely-available1
code diversification tool, Multicompiler (MCR) [30]. In
particular, we analyze code variants generated by MCR to
check if the code violates softwaremitigations against SCAs.
To do that, we use MCR to diversify benchmark programs
that implement security mitigations against SCAs at source-
code level. Then we verify whether the generated program
variants (for the respective benchmarks) satisfy the software
mitigations against PSC or TSC attacks. For PSC, we use
a tool2 by Wang et al. [72], whereas for TSC, we measure
the execution time manually. Both tools focus on the x86
architecture. For these experiments, we generate 50 random
variants by providing 50 different random seeds to MCR.
MCR supports randomization at multiple layers of the com-
pilation process, including hardware-register randomization
andNOP-insertion. These randomizing transformationsmay
affect PSC and TSC mitigations, respectively. In the fol-
lowing paragraphs, we investigate how hardware-register
randomization affects ROT leakages and howNOP-insertion
affects the CR property.
Hardware-Register Randomization: Hardware-register
randomization [20] is a form of fine-grained software di-
versification that generates program variants that differ with
regard to the register assignment at the register-allocation
stage of the compilation process. Among other transforma-
tions, MCR implements hardware-register randomization.
To identify the number of ROT leaks of each of the variants,
we implement parts of the tool by Wang et al. [72] to
extract information from the register allocation step inMCR.
Subsequently, we use the tool by Wang et al. [72] to identify
the leaks in the variants.

For each of the masked benchmarks, Table 2 shows the
number of leaks that appear in the baseline, which uses the
LLVM compiler [72] and the rate of variants that contain
different numbers of leaks after diversification with MCR.
The last column shows the rate of variants that have at least
one leak. Overall, there are leaking variants in all programs,
ranging from 62% for P0 and 100% for P2, P4, P6-P10.
For programs P0 to P6, the number of leaks differs for
the generated variant population. In particular, MCR may
introduce leaks in P1, P2, and P6 that the baseline does
not generate. Inversely, MCR may generate variants that
are leak-free for P0, P1, P3, and P5. This means that the
hardware-register randomization transformation allows the
generation of leak-free variants.

To summarize, we observe that randomization may
break masking mitigations, whereas, in many cases, there
is a space for generating leak-free variants.

1MCR: https://github.com/securesystemslab/multicompiler.git
2FSE19 tool: https://github.com/bobowang2333/FSE19

Tsoupidi et al.: Preprint submitted to Elsevier Page 8 of 17

https://github.com/securesystemslab/multicompiler.git
https://github.com/bobowang2333/FSE19


Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

Table 2
ROT vulnerabilities in diversified code by Multicompiler (MCR)

Prg [72] MCR
#leaks #leaks (% of variants) ≥ one leak

P0 1 1 (62%) 0 (38%) 62%
P1 0 2 (92%) 1 (2%) 0 (6%) 94%
P2 1 2 (100%) 100%
P3 1 1 (70%) 0 (30%) 70%
P4 1 1 (100%) 100%
P5 1 1 (96%) 0 (4%) 96%
P6 3 4 (52%) 5 (48%) 100%
P7 14 14 (100%) 100%
P8 16 16 (100%) 100%
P9 12 12 (100%) 100%
P10 5 5 (100%) 100%

Table 3
Optimality overhead in cycles for CR-preserving code-
generation; µ denotes secure variants and b non-secure
variants; OH stands for Overhead

Prg
ARM Cortex M0 Mips32
Cycles OH (%) Cycles OH (%)
µ b µ b

C0 26 20 30 13 10 30
C1 1406 1220 15 1105 857 28
C2 1039 803 29 975 571 70
C3 3012 1984 51 7641 5843 30
C4 16130 13590 18 10429 8905 17

NOP Insertion: NOP insertion is a form of fine-grained
software diversification that generates program variants that
contain randomly inserted NOP operations. MCR imple-
ments NOP-insertion randomization [30]. The source code
of programs C0 to C3 does not comply with the CR policy.
To identify CR violations, we consider C0, C1 and C3
because they are simple to verify manually. We modify the
C implementations of C0, C1 and C3 to balance the secret-
dependent branches and consider a simple timing model for
the processor that considers one cycle per instruction. The
results are that 88% of C0, 74% of C1, and 72% of C3 are
unbalanced. MCR inserts NOP operations randomly without
information about secret balancing and, thus, generates non-
CR-preserving code3. To summarize, NOP insertion may
break branch balancing for CR programs.
4.3. Effectiveness and Efficiency of TSC-Aware

Code Generation
This section evaluates the CR-preserving code genera-

tion in three dimensions, 1) performance overhead, 2) com-
pilation overhead, and 3) security.

3Here, we do not investigate multi-variant execution, where different
variants are loaded dynamically, which may hinder timing attacks by
randomizing the execution time.

Table 4
Compilation-time overhead in seconds for CR-preserving code
generation; µ denotes secure variants and b non-secure
variants; OH stands for Overhead

Prg
ARM Cortex M0 Mips32
t (s) OH (%) t(s) OH (%)
µ b µ b

C0 0.32 0.19 68 0.81 0.55 47
C1 1.68 0.91 84 4.42 2.56 72
C2 8.48 0.81 946 2.65 1.33 99
C3 57.26 23.46 144 8.02 4.97 61
C4 150.80 92.72 62 27.52 7.93 247

Table 5
Security Evaluation using a WCET tool to compare the
execution time: ⊤ denotes a symbolic value, v denotes a set of
concrete values, and ai corresponds to the itℎ input argument

Prg ARM Cortex M0 Mips32
Input µ Input µ

C0 a0,a1 =⊤ 3 a0,a1 = ⊤ 3

C1 a0,a1,a2,a3 = ⊤a 3 a0,a1,a3 = ⊤, a2 = v 3

C2 a0,a1,a2,a3 = ⊤ 3 a0,a1,a2,a3 = ⊤ 3

C3 a0,a1,a2,a3 = ⊤a 3 a0,a1,a3 = ⊤, a2 = v 3

C4 a0,a1,a2,a3 = va,b 3 a0,a1,a2 = ⊤, a3 = v 3
aVerified only the secret-dependent branches to improve
scalability and accuracy
bThe concrete values correspond to addresses of the inputs

4.3.1. Performance Overhead
The CR-preserving code generation extends Unison [40]

with constraints that enforce the CR property. For opti-
mizing code against TSCs, SecDivCon optimizes the gen-
erated code given the compiler-backend constraints and
the newly introduced security constraints. Generating CR-
preserving programs introduces performance overhead due
to the introduction of new basic blocks and/or NOP padding
for balancing secret-dependent branches. To estimate the
overhead on the generated code, we utilize the cost model
(see Section 3.2.1) of the constraint-based compiler back-
end [40]. Table 3 shows the performance overhead of
the CR-preserving code generation backend of SecDivCon
(µ) compared to Unison that is not security aware (b).
SecDivCon has a maximum overhead of 70% over Unison
for C2. The introduced overhead is due to the introduction
of new basic blocks and the extension of other basic blocks
in order to balance secret-dependent execution paths. In
contrast to the CR-preserving code generation, PSC-aware
code generation does not introduce significant execution-
time overhead [70]. One reason for this is that the CR
policy affects directly the execution time of the generated
code because it enforces secret-dependent block balance by
increasing the execution time of all secret-dependent paths
to reach the longest path.
4.3.2. Compilation Overhead

The introdution of new constraints to satisfy the constant-
resource property in the constraint model may lead to

Tsoupidi et al.: Preprint submitted to Elsevier Page 9 of 17



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

increased compilation time compared to non-secure compi-
lation in Unison. To evaluate the compilation-time overhead,
we compare the compilation time of SecDivConwithUnison
measuring the solving time. Table 4 shows the compilation-
time overhead of SecDivCon (µ) compared to Unison (non-
CR-preserving code optimization) [40] (b). For ARM
Cortex M0, the compilation time is at most ten times slower
in SecDivCon compared to Unison for C2. For MIPS, we
observe lower slowdown up to 3.5 times for C4. PSC-aware
code generation [70] demonstrates a similar difference in the
compilation-time slowdown between the two architectures.
Here, the introduced compilation-time slowdown is mainly
due to the introduced constraints for balancing the cost of
different paths, which introduces inter-block dependencies
that delay the solving process. At the same time, we notice
larger absolute compilation times for ARM cortex M0
than for MIPS. This is due to the characteristics of the
ARM Thumb architecture compared to MIPS32, including
a smaller number of general-purpose hardware registers and
two-address instructions.
4.3.3. Security Evaluation

SecDivCon uses a constraint model to generate secure
variants. To verify the effectiveness of SecDivCon against
timing side channels, we use two Worst-Case Execution
Time (WCET) tools for the two architectures we are in-
vestigating. WCET is typically a sound overapproximation
of the execution time of the program, whereas Best-Case
Execution Time (BCET) is a sound underapproximation of
the execution time. For MIPS, we use KTA [12, 68]. KTA
is a tool that extracts the best- and worst-case execution
time for a binary program. For evaluating ARM Cortex
M0, we use a symbolic-execution-based WCET tool4 that
generates the WCET and BCET for a sequence of binary
instructions [39]. To verify that SecDivCon generates CR
programs, we test the generated binaries using aWCET tool.
We give as inputs symbolic values that range over all integer
values (⊤) for secret values and public values that do not
affect the control flow, whereas for public values that affect
the control flow (e.g. loop bounds), we provide concrete
values. If the returned BCET and WCET are equal, then we
have evidence that the program’s execution time is secret
independent for the given concrete inputs. Performing the
same experiment using multiple concrete inputs gives an
indication that the program satisfies the CR property. More
specifically, we compare the WCET and the BCET of the
function for different concrete values of the public inputs. If
∀p ∈ INtest.wcetp = bcetp for all concrete public inputs,
INtest, we say that the program is constant resource modulo
inputs5. For each of the benchmark programs, Table 5 shows
the type of input value we use (Input) and the result of
the comparison between WCET and BCET (µ). For the
experiment, we provide different values for the concrete

4CM0 WCET: https://github.com/kth-step/HolBA/tree/dev_

symbexec_form
5Note that possible overapproximations of the WCET or underap-

proximations of the BCET may lead to inequality of BCET and WCET,
regardless of the program satisfying the CR property.

value v. Symbol3 denotes that the experiments for all inputs
result in the same WCET and BCET. The result of this
experiment indicates that the generated code does not violate
the CR property.
4.4. SCA-Mitigation Effect on Code Diversification

To evaluate the effect of SCA mitigations on code di-
versification, we compare the effect of SCA-aware diver-
sification with SCA-unaware diversification. We evaluate
SecDivCon in two axes, 1) diversity and 2) diversification
scalability.

Table 6 shows the number of variants (N) and the diversi-
fication time in seconds (t(s)) for each of the benchmarks and
each of the configurations of the diversification experiments.
The diversification time consists of the time it takes to
generate diverse program variants given an initial optimized
solution. We use a time limit of ten minutes. In addition, we
use upper bound (200) on the number of variants, because
of the increasing complexity of the pairwise gadget-overlap
rate (see Section 4.5) that depends on all pairs of generated
variants. For each of the two architectures, ARM Cortex M0
andMIPS32, we perform SCA-aware (µ) diversification and
SCA-unaware (b) diversification using 0% (optimal based
on the cost model) and 10% optimality gap. The optimality
gap, p, depends on the cost model of the combinatorial
compiler backend and the input best-found solution. The
optimality gap results in a constraint that ensures that the
cost of each generated variant is at most p% worse than the
best-found solution.

In the upper part of Table 6, we see that for ARMThumb
there is limited diversity for small benchmarks (P0-P3),
especially when restricting the solutions to the optimal/best-
found ones (0% optimality gap). Increasing the optimality
gap to 10% enables SecDivCon to generate a larger number
of program variants. For both cases, the presence of PSC-
mitigating constraints reduces the number of available vari-
ants. The opposite occurs for P3, where SecDivCon gener-
ates more variants compared to PSC-unaware code diversi-
fication. This is due to the introduction of additional trans-
formations (random variable copies) in PSC-aware compi-
lation, which increases the search space and diversification
ability of SecDivCon.

For larger benchmarks (P4-P6), SecDivCon generates all
the requested variants (200). Looking at the diversification
time of these benchmarks, we notice a clear overhead of
PSC-aware compared to PSC-unaware diversification. The
overhead is up to a slowdown of 55 times for P6 in MIPS32.
For the largest benchmarks, P7-P10, SecDivCon reaches the
time limit (TO) and the number of generated variants is sig-
nificantly less than for the PSC-insecure variant generation.
Interestingly, increasing the optimality gap to 10% decreases
the number of generated variants. As we see in small bench-
marks, increasing the optimality gap allows for non-optimal
(according to the model) solutions, which increases the
available variants. However, increasing the optimality gap,
increases also the search space, which increases the solver

Tsoupidi et al.: Preprint submitted to Elsevier Page 10 of 17

https://github.com/kth-step/HolBA/tree/dev_symbexec_form
https://github.com/kth-step/HolBA/tree/dev_symbexec_form


Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

Table 6
Number of variants (N) and diversification time (t) in seconds for SCA-aware (µ) and non SCA-aware (b) diversification in ARM
Cortex M0 and Mips32; TO stands for time limit (ten minutes); SecDivCon controls the execution-time overhead, here we show
the results for a maximum execution-time overhead of 0% and 10%.

Prg

ARM Cortex M0 Mips32
0% 10% 0% 10%

µ b µ b µ b µ b

N t (s) N t (s) N t (s) N t (s) N t (s) N t (s) N t (s) N t (s)
P0 1 - 2 0.00 8 8.09 18 150.88 17 0.03 18 0.01 17 0.03 18 0.01
P1 5 0.17 16 0.05 109 194.53 200 9.47 200 0.36 200 0.12 200 1.70 200 0.26
P2 2 0.00 2 0.00 84 397.67 65 196.98 200 0.44 200 0.12 200 3.65 200 0.41
P3 39 217.16 9 0.17 200 73.97 200 15.90 200 0.70 200 0.20 200 4.98 200 0.51
P4 200 28.83 200 2.70 200 27.21 200 2.09 200 85.91 200 3.03 200 74.03 200 3.80
P5 200 28.76 200 2.71 200 27.36 200 2.10 200 86.31 200 3.05 200 73.48 200 3.78
P6 200 31.18 200 2.48 200 29.01 200 2.25 200 134.76 200 3.75 200 215.73 200 3.94
P7 51 TO 200 18.60 51 TO 200 22.69 40 TO 200 20.32 32 TO 200 55.32
P8 69 TO 200 15.47 58 TO 200 20.55 47 TO 200 20.40 34 TO 200 65.83
P9 185 TO 200 18.16 165 TO 200 23.24 6 TO 200 306.09 8 TO 200 171.21
P10 53 TO 200 23.27 20 TO 200 35.28 36 TO 200 16.44 15 TO 200 17.34
C0 200 0.65 4 41.15 200 0.38 162 247.78 200 0.32 19 0.04 200 0.46 200 1.77
C1 200 1.22 200 1.69 200 2.96 200 2.76 200 0.88 200 0.39 200 7.66 200 5.47
C2 200 0.53 200 0.25 200 2.51 200 1.51 200 0.99 200 0.43 200 4.43 200 1.66
C3 200 6.39 200 5.24 200 8.55 200 8.53 200 4.07 200 2.69 200 22.09 200 19.88
C4 200 14.11 200 10.25 200 27.53 200 17.19 200 10.27 200 7.85 200 27.87 200 18.97

overhead for locating solutions. This results in a reduction
of the generated solutions.

We observe similar trends for both MIPS32 and ARM
Thumb. The main difference is that among small bench-
marks, only P0 with 0% optimality gap appears to lead to
reduced diversity in MIPS32. At the same time, the differ-
ence in diversity between secure and non-secure variants
is smaller in MIPS32 (17 compared to 18 in P0) than for
ARM Thumb (1 compared to 2 in P0). The reason for this
is that MIPS32 provides a larger number of general-purpose
registers that may replace vulnerable register combinations
for ROT leakages.

The lower part of Table 6 shows the results for TSC-
aware diversification. Here, SecDivCon is able to generate
200 function variants for all benchmarks. Interestingly, for
C0, the number of variants for TSC-unaware diversifica-
tion is less than 200 because our CR mitigation introduces
performance overhead (see Section 4.3) and thus, increased
diversification capacity. The diversification-time overhead
is less than for PSC-aware diversification, reaching up to a
slowdown of eight times (C0, 0% optimality gap, MIPS32).
In all cases, SecDivCon was able to generate 200 variants in
less than 30 seconds.

To summarize, we observe a clear effect on the diversifi-
cation time and available diversity in SecDivCon compared
to SCA-unaware code diversification. This effect is more sig-
nificant in PSC-aware diversification, where there is a gen-
eral decrease in diversity and increase in the diversification-
time slowdown. TSC-aware diversification appears to affect
mainly diversification time, whereas in some cases, the CR
countermeasure increases the available diversity. Nonethe-
less, in almost all cases, SecDivCon generates program
variants within ten minutes.

4.5. Effect of Security Constraints on Code-Reuse
Attacks

This section evaluates the effect of SCA-aware diversi-
fication on the effectiveness against CRAs. To evaluate the
effectiveness of SecDivCon against CRAs, we measure the
rate of code-reuse gadgets that are relocated or transformed
among different variants. We perform this evaluation at the
generated binary ELF [24] files. This evaluation uses ROP-
gadget6, a tool that extracts code-reuse gadgets from a binary
and Capstone, a lightweight disassembly framework. We
extract the gadgets from the .text section of the generated
ELF files. Similarly to previous work [30, 51], we assess
the gadget-overlap rate srate(pi, pj) for each pair of variants
pi, pj ∈ S in the set of generated variants, S, to evaluate
the effectiveness of SecDivCon against CRAs. This metric
returns the rate of the gadgets of variant pi that appear atthe same address in the second variant pj . The procedure
for computing srate(pi, pj) is as follows: 1) run ROPgadget
on variant pi to find the set of gadgets gad(pi) in variant
pi, and 2) for every g ∈ gad(pi), check whether there
exists a gadget identical to g at the same address in the
second variant pj . Before the comparison, we remove all
NOP instructions. The smaller the srate is, the fewer gadgets
are shared among program variants, and thus, the highest
the effect against CRAs. Note that srate does not check
the semantic equivalence of the gadgets, and hence, there
may be false negatives, namely pairs of gadgets that are
syntactically different but semantically equivalent. We use a
time limit of ten minutes and an upper bound on the number
of variants to generate because of the increasing complexity

6ROPgadget: https://github.com/JonathanSalwan/ROPgadget

Tsoupidi et al.: Preprint submitted to Elsevier Page 11 of 17

https://github.com/JonathanSalwan/ROPgadget


Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

Table 7
CRA gadget-overlap rate in pairs of variants; µ denotes secure variants and b non-secure variants

Prg

ARM Cortex M0 Mips32
0% 10% 0% 10%

µ b µ b µ b µ b
0 20 100 0 20 100 0 20 100 0 20 100 0 20 100 0 20 100 0 20 100 0 20 100

P0 - - - - - 100 23 - 77 21 - 79 100 - - 100 - - 100 - - 100 - -
P1 - 53 47 - 78 23 14 55 31 12 71 16 89 - 11 94 - 6 95 5 - 94 6 -
P2 - 100 - - 100 - 3 66 31 5 64 32 93 6 1 94 6 1 97 3 - 97 2 -
P3 - 71 29 - 73 27 2 83 15 11 81 9 99 1 - 99 1 - 99 1 - 99 1 -
P4 - 86 14 - 75 25 5 87 7 10 83 7 100 - - 100 - - 99 - - 99 1 -
P5 - 86 14 - 75 25 5 87 7 10 83 7 100 - - 100 - - 99 - - 99 1 -
P6 - 90 10 - 87 13 8 86 6 15 80 4 100 - - 100 - - 99 1 - 99 1 -
P7 1 92 8 - 95 5 6 87 7 7 88 5 98 2 - 100 - - 99 1 - 100 - -
P8 2 88 11 - 93 6 19 75 6 3 91 5 97 2 1 100 - - 98 2 1 100 - -
P9 - 83 17 32 63 5 10 85 5 46 50 4 78 10 12 100 - - 95 1 4 99 1 -
P10 57 42 2 - 95 5 75 22 2 64 35 1 79 19 1 94 6 - 66 26 8 99 1 -
C0 36 61 3 - 45 55 43 54 3 55 30 15 29 68 2 95 - 5 80 18 2 86 14 -
C1 34 66 - - 100 - 95 4 1 93 6 1 29 71 - 41 59 - 92 5 2 95 3 2
C2 - 69 31 - 68 32 42 37 21 53 33 13 90 10 - 82 18 - 92 8 - 80 20 -
C3 18 56 26 - 1 99 93 6 2 93 4 3 8 92 - - 100 - 97 1 2 96 3 2
C4 57 41 1 - 97 3 96 4 - 95 5 - 94 6 - 94 6 - 100 - - 99 1 -

of the pairwise gadget-overlap rate that depends on all pairs
of generated variants.

Table 7 shows the rate of shared code-reuse gadgets
among the generated variants for ARM Cortex M0 and
MIPS32. For each processor, Table 7, shows the results for
two configurations that allow variants to introduce at most
0% to 10% execution-time overhead. We compare SCA-
aware variants (µ) and SCA-unaware variants (b). For each
of these cases, Table 7 shows the srate, i.e. rate of pairs of
variants, in the form of a histogram with three buckets. The
buckets represent the rate of variant pairs that share 1) 0% of
their gadgets (0 in Table 7), 2) (0%, 20%] of the gadgets (20
in Table 7), or 3) (20%, 100] of the gadgets (100 in Table 7).
The goal of SecDivCon is to generate variants that share as
few gadgets as possible, i.e. the variant pairs share no gadgets
(0 in Table 7).

In Table 7, we observe a general difference between
the two processors, with SecDivCon achieving lower gadget
survival rate forMIPS32 thanARMCortexM0.We describe
the results for the two processors in the following.

In ARM Cortex M0, with 0% allowed execution-time
overhead, for both SCA-aware and SCA-unaware diversi-
fication, the mode of the pairwise survival rate for the
majority of the benchmarks lies within (0%, 20%]. For SCA-
aware diversification for 13 benchmarks the mode of the
distribution is under (0%, 20%] and for two is 0% (P10 and
C4). The results for SCA-unaware diversification are similar,
with P9 having improved gadget elimination and P10, C0,
C3, and C4 having reduced gadget-elimination ability than
SecDivCon. Increasing the optimality gap to 10% results in
reduced survival rate (improvement). In particular, for SCA-
aware diversification, five benchmarks have a distribution
with the mode in 0%, ten have their mode under (0%, 20%],
and one under (20%, 100%]. Here, the results for SecDivCon

are similar to SCA-unaware diversification, with C0 showing
better results in SCA-unaware diversification.

In contrast, for MIPS32, most experiments (apart for C0,
C1, and C3 with 0% optimality gap) have their mode under
0% survival rate, which means that the majority of variant
pairs do not share any gadgets. The reason why MIPS32
appears to achieve higher gadget relocation/diversification
is the characteristics of the architecture with many general
purpose registers. ARM Cortex M0, on the other hand, has
significantly fewer general-purpose hardware registers and
multiple 2-address instructions that are highly constrained.

To summarize, the results show relatively low gad-
get survival rate for both ARM Cortex M0 and MIPS32,
whereas, this survival rate does not appear to increase
(worse) for SCA-aware diversification. This means that
combining SCA mitigations with diversification against
CRAs does not reduce the mitigation capability of fine-
grained diversification against CRAs.

5. Discussion
This section discusses the application of SecDivCon

against more advanced attacks and the potential extension
of SecDivCon to support additional mitigations.
Whole-Program Mitigation: Our threat model consid-
ers static gadget-based code-reuse attacks, such as ROP
attacks [62]. SecDivCon proposes a fine-grained function-
level diversification approach as a mitigation against these
attacks. Combining the generated variants for each function
allows for whole-program diversification [69]. Return-into-
libc (RILC) [67] attacks where the gadgets correspond to en-
tire functions may be defeated by combining whole-program
diversification with function shuffling and/or coarse-grained

Tsoupidi et al.: Preprint submitted to Elsevier Page 12 of 17



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

diversification approaches, such as Address Space Layout
Randomization (ASLR).
Advanced Attacks: Advanced code-reuse attacks, such as
Blind ROP (BROP) [8], may use a memory vulnerability
to read the program memory and find gadgets dynamically
in the diversified code. BROP attacks read the program
memory using a memory vulnerability and depend on the
reset of the system after a system crash. An efficient ap-
proach against BROP is re-randomization [64] that may
be performed at boot time [52]. Runtime re-randomization
switches program variants at runtime at an interval within
which the attacker should not be able to complete an attack.
The main drawbacks of re-randomization is that 1) it may
lead to highmemory footprint for the binary [16], whichmay
be forbidding in resource-constrained devices, and 2) it con-
tributes to additional performance overhead. Nonetheless,
SecDivCon performs fine-grained automatic diversification
that may be used in a re-randomization scheme, enabling
improved protection against advanced code-reuse attacks.

Apart from classical power analyses, such as DPA and
CPA, recently, the advancement of deep learning has al-
lowed more powerful attacks. Ngo et al. [46] show that
advanced randomization techniques, such as plaintext shuf-
fling, are vulnerable [46, 45], when the implementation leaks
secret values. They also show that first-order masking can
be defeated with deep-learning based analysis, however, the
masking property is preserved at the source-code level, thus
ROT or MRE leakages may be present after compilation [5].
We leave the evaluation of our approach against these attacks
as future work.
Implement Additional Mitigations: SecDivCon com-
bines code diversification and side-channel attack mitiga-
tions to protect embedded devices. However, additional mit-
igations may be necessary to protect a device against other
types of attacks. An essential step for combining different
mitigations is to determine whether these mitigations are
conflicting. In case they are, the designer may describe the
newmitigations as constraints to extend the constraint model
of SecDivCon. This allows SecDivCon to generate secure
code.
Security Policy: SecDivCon is suitable for analyzing func-
tions that process secret values and hence, are vulnerable to
side-channel attacks. The security policy defines, which of
the input values are secret, and which of them are public

or random. The type of each value depends on the usage of
the respective algorithm in a security-critical application.
SecDivCon requires only annotating the function arguments
and applies a type-inference algorithm to extract the type of
each intermediate variable.

6. Related Work
This section presents the related work with regards to

Code-Reuse Attacks and Side-Channel Attacks. Table 8

Table 8
Related work; CRA stands for code-reuse attacks; TSC stands
for timing side-channel attacks; MS stands for memory safety;
PSC stands for power side-channel attacks; IL stands for
interrupt-latency SCA; Div stands for diversification; Obf
stands for obfuscation; CFI stands for control-flow integrity;
CT stands for constant-time discipline; SM stands for software
masking; BB stands for basic-block balance; RR stands for re-
randomization; HWCFI stands for hardware-assisted CFI; PO
corresponds to the upper bound of the performance overhead;
SDC stands for SecDivCon.
Pub. Attack Mitigation PO Target
[30] CRA Div 25% x86
[51] CRA Div 0% x86
[19] TSC Div 8x x86
[55] TSC Obf 16x x86
[53] CRA Div, RR - AVR
[2] CRA CFI ∼80% ARM
[48] CRA CFI 5x ARM
[75] TSC, MS CT - C
[36] CRA Div, RR 7% x86
[59] CRA Div,CFI 70% ARM
[63] PSC SM 64% ARM
[73] TSC, IL BB 60% MSP430
[64] CRA Div, RR 6% ARM
[10] TSC CT 5x x86
[25] CRA HWCFI 24% ARM

SDC
TSC, PSC,

CRA Div, SM/BB 70%a MIPS,
ARM

aDiversification overhead is controlled

shows a representative subset of compiler-based or binary-
rewrite contributions against CRAs and SCAs in the litera-
ture. For each of these works, Table 8 shows the publication
citation reference (Pub.), the attack it is mitigating (Attack),
the type of mitigation the publication is proposing (Mitiga-
tion), the maximum performance overhead the approach in-
troduces (PO), and the target language/architecture (Target).
6.1. Mitigations against Code-Reuse Attacks

In the literature, there are two main approaches against
CRAs, software diversification and CFI.

Automatic software diversity has been proposed as an
efficient mitigation against CRAs [38]. Many software di-
versification approaches target x86 systems [30, 51, 36],
while others target embedded systems [53, 59, 69, 64]. The
main characteristic of these approaches is that they lead
to relatively low performance overhead. For example, fine-
grained diversification approaches may lead to 0% perfor-
mance overhead [51, 69].

Re-randomization approaches [64, 53, 36] repeat the
randomization process in specific timing intervals to protect
against advanced CRAs, such as JIT-ROP [65], BROP,
and side-channel-based diversification deciphering [61].
These approachesmay introduce additional binary-size over-
head [16] and performance overhead. However, this perfor-
mance overhead is typically low, for example, HARM [64]
introduces up to 6% additional overhead.

Tsoupidi et al.: Preprint submitted to Elsevier Page 13 of 17



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

CFImitigates CRAs by ensuring that the dynamic execu-
tion of the program adheres to the intended program control
flow [15]. Software-based CFI systems [2, 48, 59] typically
result in high overhead, whereas hardware-assisted methods
may lead to reduced overhead [25]. However, hardware-
assisted CFI approaches often depend on specialized hard-
ware mechanisms [15].

To summarize, there are multiple approaches to mitigate
CRAs, but none of them considers or evaluates the effect on
mitigations against SCAs. Comparing code diversification
and CFI approaches, the former typically lead to lower
overhead. This is the main motivation for selecting code
diversification as a mitigation against CRAs.
6.2. Code Hardening Against Side-Channel

Attacks
Software masking is a software approach to mitigate

PSCs. However, a compiler that translates a program to
machine code may introduce power leaks [72, 63, 49, 5].
Wang et al. [72] identify leaks in masked implementation
using a type-inference algorithm, and then, perform register-
allocation transformations to mitigate these leaks in LLVM.
Rosita [63] performs an iterative process to identify power
leakages in software implementations for ARM Cortex M0,
with a performance overhead of up to 64%. Our recent
approach [70] based on type inference [26] presents an
approach with execution overhead up to 13%. SecDivCon
adapts this approach to generate diverse code variants that
preserve software masking.

The constant-time programming discipline [44] is a
widely-used programming discipline that prevents TSC
attacks. It prohibits the use of secret values in branch de-
cisions, memory indexes, and variable-latency instructions
(such as division in many architectures). Borrello et al. [10]
linearize code to translate a program to a constant-time
equivalent including branches, loops, and memory accesses.
The main drawback of this approach is the introduction of
execution-time overhead of up to five times. The constant-
time programming discipline leads to secure code as it
ensures that there are no secret-dependent timing variations,
however it is restrictive because it does not allow secret-
dependent branches and makes the code difficult to read
and implement [47]. Barthe et al. [6] present CR pro-
gramming, an alternative, more relaxed form of constant-
time programming that allows branches on secret values as
long as the diverse execution paths take identical time to
execute. Similarly, Brown et al. [13] perform transforma-
tions to balance secret-dependent branches by balancing the
branch bodies at the C level. Winderix et al. [73] balance
secret-dependent branches with equivalent-latency NOPs to
mitigate TSC and Interrupt Latency Side-Channel Attacks.
The latter attacks distinguish which path of a branch the
program follows based on the latencies of the instructions
in each block. A different approach against timing attacks
is Raccoon [55], which uses control-flow obfuscation to
mitigate TSC attacks. However, Joshi et al. [33] has shown
that obfuscation may introduce code-reuse gadgets. Hence,

Raccoon may increase the attack surface of CRAs. More-
over, this mitigation introduces an overhead of up to 16
times, which is prohibiting for resource-constraint devices.
Crane et al. [19] present a compiler-based diversification
approach that inserts timing noise to obfuscate cache-based
timing attacks on cryptographic algorithms. However, this
approach introduces a performance overhead of up to 8x,
which is higher than SecDivCon that introduces an overhead
of up to 70% for generating constant-resource programs.

Finally, HACL* by Zinzindohoué et al. [75] is a verified
cryptographic library that generates C code that is memory
safe and constant time. Although memory safety hinders
memory corruption vulnerabilities in the generated library,
HACL* does not prohibit memory vulnerabilities in the rest
of the code, which may enable CRAs. Thus, mitigations
against CRAs may still be necessary.

In summary, there are compiler-based and binary rewrit-
ing approaches to mitigate PSC attacks and TSC attacks;
however, none of these approaches are effective against
CRAs and/or consider the effect on CRAs.

7. Conclusion and Future Work
This paper presents SecDivCon – a constraint-based ap-

proach that combines code diversification with side-channel
mitigations. It enables the secure-by-design generation of
optimized code for small, predictable hardware architec-
tures. Our evaluation shows that the introduction of SCA
mitigation-preserving constraints impacts the scalability of
diversification, but it does not have a negative effect against
code-reuse attacks.

In future work, we plan to investigate how to improve
SecDivCon’s scalability and extend the CR-preservingmodel
with additional transformations that allow the analysis of
secret-dependent branches that contain bounded loops.

Acknowledgment
We would like to thank Jingbo Wang for their support

with their tool. We would also like to thank Andreas Lindner
for his support with verifying SecDivCon using WCET
analysis for ARM Cortex M0. In addition, we would like to
thankRoberto Castañeda Lozano for his technical support on
Unison, SecDivCon’s underlying constraint-based compiler
backend. Finally, we would like to thank Nicolas Harrand,
Amir M. Ahmadian, and Javier Cabrera Arteaga for their
feedback on this paper. P. Papadimitratos acknowledges the
support of the Swedish Science Foundation (VR) and the
Knut and Alice Wallenberg (KAW) Foundation that funded
parts of his work in this context. E. Troubitsyna acknowl-
edges the support of the Swedish Foundation for Strategic
Research (SSF) in this work.

References
[1] Abera, T., Asokan, N., Davi, L., Ekberg, J.E., Nyman, T., Paverd, A.,

Sadeghi, A.R., Tsudik, G., 2016a. C-FLAT: Control-Flow Attestation
for Embedded Systems Software, in: Proceedings of the 2016 ACM

Tsoupidi et al.: Preprint submitted to Elsevier Page 14 of 17



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

SIGSACConference on Computer and Communications Security, pp.
743–754. doi:10.1145/2976749.2978358.

[2] Abera, T., Asokan, N., Davi, L., Ekberg, J.E., Nyman, T., Paverd, A.,
Sadeghi, A.R., Tsudik, G., 2016b. C-FLAT: Control-FlowAttestation
for Embedded Systems Software, in: Proceedings of the 2016 ACM
SIGSACConference on Computer and Communications Security, pp.
743–754. doi:10.1145/2976749.2978358.

[3] Ahmed, S., Xiao, Y., Snow, K.Z., Tan, G., Monrose, F., Yao, D.D.,
2020. Methodologies for Quantifying (Re-)randomization Security
and Timing under JIT-ROP, in: Proceedings of the 2020 ACM
SIGSACConference on Computer and Communications Security, pp.
1803–1820.

[4] ARM, . Cortex-M0 - Technical Reference Manual. URL: https:
//developer.arm.com/documentation/ddi0432/c/. accessed: November
2022.

[5] Athanasiou, K., Wahl, T., Ding, A.A., Fei, Y., 2020. Automatic
detection and repair of transition-based leakage in software binaries,
in: Software Verification. Springer, pp. 50–67.

[6] Barthe, G., Blazy, S., Hutin, R., Pichardie, D., 2021. Secure Com-
pilation of Constant-Resource Programs, in: CSF 2021 - 34th IEEE
Computer Security Foundations Symposium, IEEE. pp. 1–12.

[7] Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P., 2013. Sleuth: Au-
tomated Verification of Software Power Analysis Countermeasures,
in: Cryptographic Hardware and Embedded Systems - CHES 2013,
Springer. pp. 293–310. doi:10.1007/978-3-642-40349-1_17.

[8] Bittau, A., Belay, A.,Mashtizadeh, A.,Mazières, D., Boneh, D., 2014.
Hacking Blind, in: 2014 IEEE Symposium on Security and Privacy,
pp. 227–242. ISSN: 2375-1207.

[9] Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z., 2011. Jump-oriented
Programming: A New Class of Code-reuse Attack, in: Proceedings of
the 6th ACM Symposium on Information, Computer and Communi-
cations Security, ACM. pp. 30–40.

[10] Borrello, P., D’Elia, D.C., Querzoni, L., Giuffrida, C., 2021. Con-
stantine: Automatic Side-Channel Resistance Using Efficient Con-
trol and Data Flow Linearization. Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security ,
715–733doi:10.1145/3460120.3484583.

[11] Brier, E., Clavier, C., Olivier, F., 2004. Correlation Power Anal-
ysis with a Leakage Model, in: Cryptographic Hardware and Em-
bedded Systems - CHES 2004, Springer. pp. 16–29. doi:10.1007/
978-3-540-28632-5_2.

[12] Broman, D., 2017. A Brief Overview of the KTA WCET
Tool. doi:10.48550/arXiv.1712.05264. number: arXiv:1712.05264
arXiv:1712.05264 [cs].

[13] Brown, C., Barwell, A.D., Marquer, Y., Zendra, O., Richmond, T.,
Gu, C., 2022. Semi-automatic ladderisation: improving code security
through rewriting and dependent types, in: Proceedings of the 2022
ACM SIGPLAN International Workshop on Partial Evaluation and
Program Manipulation, pp. 14–27. doi:10.1145/3498886.3502202.

[14] Brumley, B.B., Tuveri, N., 2011. Remote Timing Attacks Are
Still Practical, in: Atluri, V., Diaz, C. (Eds.), Computer Secu-
rity – ESORICS 2011, Springer. pp. 355–371. doi:10.1007/
978-3-642-23822-2_20.

[15] Burow, N., Carr, S.A., Nash, J., Larsen, P., Franz, M., Brunthaler,
S., Payer, M., 2017. Control-Flow Integrity: Precision, Security, and
Performance. ACMComputing Surveys 50, 16:1–16:33. doi:10.1145/
3054924.

[16] Cabrera Arteaga, J., Laperdrix, P., Monperrus, M., Baudry, B., 2022.
Multi-variant Execution at the Edge, in: Proceedings of the 9th ACM
Workshop on Moving Target Defense, pp. 11–22.

[17] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham,
H., Winandy, M., 2010. Return-oriented Programming Without
Returns, in: Proceedings of the 17th ACM Conference on Computer
and Communications Security, ACM. pp. 559–572.

[18] Coron, J.S., Prouff, E., Rivain, M., Roche, T., 2014. Higher-Order
Side Channel Security and Mask Refreshing, in: Fast Software En-
cryption, Springer. pp. 410–424. doi:10.1007/978-3-662-43933-3_21.

[19] Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M., 2015a.
Thwarting Cache Side-Channel Attacks Through Dynamic Software
Diversity, in: Proceedings 2015 Network and Distributed System
Security Symposium, Internet Society. doi:10.14722/ndss.2015.23264.

[20] Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi,
A., Brunthaler, S., Franz, M., 2015b. Readactor: Practical Code
Randomization Resilient to Memory Disclosure, in: 2015 IEEE Sym-
posium on Security and Privacy, pp. 763–780. doi:10.1109/SP.2015.
52.

[21] Deogirikar, J., Vidhate, A., 2017. Security attacks in iot: A survey,
in: 2017 International Conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud)(I-SMAC), IEEE. pp. 32–37.

[22] Devi, M., Majumder, A., 2021. Side-Channel Attack in Internet
of Things: A Survey, in: Mandal, J.K., Mukhopadhyay, S., Roy, A.
(Eds.), Applications of Internet of Things, Springer. pp. 213–222.
doi:10.1007/978-981-15-6198-6_20.

[23] D’Silva, V., Payer, M., Song, D., 2015. The Correctness-Security
Gap in Compiler Optimization, in: 2015 IEEE Security and Privacy
Workshops, pp. 73–87. doi:10.1109/SPW.2015.33.

[24] Foundation, L., . Tool interface standard (tis) portable formats
specification version 1.1. URL: https://refspecs.linuxfoundation.
org/elf/TIS1.1.pdf. accessed February 2023.

[25] Fu, A., Ding, W., Kuang, B., Li, Q., Susilo, W., Zhang, Y., 2022. FH-
CFI: Fine-grained hardware-assisted control flow integrity for ARM-
based IoT devices. Computers & Security 116, 102666. doi:10.1016/
j.cose.2022.102666.

[26] Gao, P., Zhang, J., Song, F., Wang, C., 2019. Verifying and Quanti-
fying Side-channel Resistance of Masked Software Implementations.
ACM Transactions on Software Engineering and Methodology 28,
16:1–16:32. doi:10.1145/3330392.

[27] Gecode Team, 2022. Gecode: Generic constraint development envi-
ronment. URL: https://www.gecode.org.

[28] Gilles, O., Viguier, F., Kosmatov, N., Pérez, D.G., 2022. Control-
flow integrity at risc: Attacking risc-v by jump-oriented program-
ming. URL: https://arxiv.org/abs/2211.16212, doi:10.48550/ARXIV.
2211.16212.

[29] Hebrard, E., O’Sullivan, B., Walsh, T., 2007. Distance Constraints in
Constraint Satisfaction, in: International Joint Conference on Artifi-
cial Intelligence - IJCAI 2007, p. 6.

[30] Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., Franz, M., 2013.
Profile-guided Automated Software Diversity, in: Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), IEEE Computer Society. pp. 1–11. doi:10.1109/
CGO.2013.6494997.

[31] Ingmar, L., Garcia de la Banda, M., Stuckey, P.J., Tack, G., 2020.
Modelling diversity of solutions, in: Proceedings of the thirty-fourth
AAAI conference on artificial intelligence.

[32] Jaloyan, G.A., Markantonakis, K., Akram, R.N., Robin, D., Mayes,
K., Naccache, D., 2020. Return-Oriented Programming on RISC-
V, in: Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, pp. 471–480. doi:10.1145/3320269.
3384738.

[33] Joshi, H.P., Dhanasekaran, A., Dutta, R., 2015. Trading off a vul-
nerability: does software obfuscation increase the risk of rop attacks.
Journal of Cyber Security and Mobility , 305–324.

[34] Kocher, P., Jaffe, J., Jun, B., 1999. Differential Power Analysis, in:
Advances in Cryptology — CRYPTO’ 99, Springer. pp. 388–397.
doi:10.1007/3-540-48405-1_25.

[35] Kocher, P.C., 1996. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems, in: Advances in Cryptology
—CRYPTO ’96, Springer. pp. 104–113. doi:10.1007/3-540-68697-5_
9.

[36] Koo, H., Chen, Y., Lu, L., Kemerlis, V.P., Polychronakis, M., 2018.
Compiler-Assisted Code Randomization, in: 2018 IEEE Symposium
on Security and Privacy (SP), pp. 461–477.

[37] Kruskal, J.B., 1956. On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem. Proceedings of the American
Mathematical Society 7, 48–50. doi:10.2307/2033241. publisher:

Tsoupidi et al.: Preprint submitted to Elsevier Page 15 of 17

http://dx.doi.org/10.1145/2976749.2978358
http://dx.doi.org/10.1145/2976749.2978358
https://developer.arm.com/documentation/ddi0432/c/
https://developer.arm.com/documentation/ddi0432/c/
http://dx.doi.org/10.1007/978-3-642-40349-1_17
http://dx.doi.org/10.1145/3460120.3484583
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.48550/arXiv.1712.05264
http://dx.doi.org/10.1145/3498886.3502202
http://dx.doi.org/10.1007/978-3-642-23822-2_20
http://dx.doi.org/10.1007/978-3-642-23822-2_20
http://dx.doi.org/10.1145/3054924
http://dx.doi.org/10.1145/3054924
http://dx.doi.org/10.1007/978-3-662-43933-3_21
http://dx.doi.org/10.14722/ndss.2015.23264
http://dx.doi.org/10.1109/SP.2015.52
http://dx.doi.org/10.1109/SP.2015.52
http://dx.doi.org/10.1007/978-981-15-6198-6_20
http://dx.doi.org/10.1109/SPW.2015.33
https://refspecs.linuxfoundation.org/elf/TIS1.1.pdf
https://refspecs.linuxfoundation.org/elf/TIS1.1.pdf
http://dx.doi.org/10.1016/j.cose.2022.102666
http://dx.doi.org/10.1016/j.cose.2022.102666
http://dx.doi.org/10.1145/3330392
https://www.gecode.org
https://arxiv.org/abs/2211.16212
http://dx.doi.org/10.48550/ARXIV.2211.16212
http://dx.doi.org/10.48550/ARXIV.2211.16212
http://dx.doi.org/10.1109/CGO.2013.6494997
http://dx.doi.org/10.1109/CGO.2013.6494997
http://dx.doi.org/10.1145/3320269.3384738
http://dx.doi.org/10.1145/3320269.3384738
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.2307/2033241


Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

American Mathematical Society.
[38] Larsen, P., Homescu, A., Brunthaler, S., Franz, M., 2014. SoK: Au-

tomated Software Diversity, in: 2014 IEEE Symposium on Security
and Privacy, pp. 276–291. doi:10.1109/SP.2014.25.

[39] Lindner, A., Guanciale, R., Dam, M., 2023. Proof-producing sym-
bolic execution for binary code verification. arXiv:2304.08848.

[40] Castañeda Lozano, R., Carlsson,M., Blindell, G.H., Schulte, C., 2019.
Combinatorial Register Allocation and Instruction Scheduling. ACM
Trans. Program. Lang. Syst. 41, 17:1–17:53. doi:10.1145/3332373.

[41] Castañeda Lozano, R., Schulte, C., 2019. Survey on Combinatorial
Register Allocation and Instruction Scheduling. ACM Computing
Surveys 52, 62:1–62:50. doi:10.1145/3200920.

[42] Mantel, H., Starostin, A., 2015. Transforming Out Timing Leaks,
More or Less, in: Computer Security – ESORICS 2015, Springer In-
ternational Publishing. pp. 447–467. doi:10.1007/978-3-319-24174-6_
23.

[43] Messerges, T.S., Dabbish, E.A., Sloan, R.H., 1999. Investigations of
power analysis attacks on smartcards. Smartcard 99, 151–161.

[44] Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.A., 2005. The
program counter security model: Automatic detection and removal of
control-flow side channel attacks, in: Information Security and Cryp-
tology - ICISC 2005, 8th International Conference, Seoul, Korea,
December 1-2, 2005, Revised Selected Papers, pp. 156–168.

[45] Ngo, K., Dubrova, E., Guo, Q., Johansson, T., 2021a. A Side-Channel
Attack on a Masked IND-CCA Secure Saber KEM Implementation.
IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems , 676–707doi:10.46586/tches.v2021.i4.676-707.

[46] Ngo, K., Dubrova, E., Johansson, T., 2021b. Breaking Masked and
Shuffled CCA Secure Saber KEM by Power Analysis, in: Proceedings
of the 5th Workshop on Attacks and Solutions in Hardware Security,
pp. 51–61.

[47] Ngo, V.C., Dehesa-Azuara, M., Fredrikson, M., Hoffmann, J., 2017.
Verifying and Synthesizing Constant-Resource Implementations with
Types, in: 2017 IEEE Symposium on Security and Privacy (SP), pp.
710–728. doi:10.1109/SP.2017.53. iSSN: 2375-1207.

[48] Nyman, T., Ekberg, J.E., Davi, L., Asokan, N., 2017. CFI CaRE:
Hardware-Supported Call and Return Enforcement for Commercial
Microcontrollers, in: Dacier, M., Bailey, M., Polychronakis, M., An-
tonakakis, M. (Eds.), Research in Attacks, Intrusions, and Defenses,
Springer International Publishing. pp. 259–284.

[49] Papagiannopoulos, K., Veshchikov, N., 2017. Mind the Gap: Towards
Secure 1st-Order Masking in Software, in: InternationalWorkshop on
Constructive Side-Channel Analysis and Secure Design, Springer. pp.
282–297.

[50] Papp, D., Ma, Z., Buttyan, L., 2015. Embedded systems security:
Threats, vulnerabilities, and attack taxonomy, in: 2015 13th Annual
Conference on Privacy, Security and Trust (PST), pp. 145–152.
doi:10.1109/PST.2015.7232966.

[51] Pappas, V., Polychronakis, M., Keromytis, A.D., 2012. Smashing the
Gadgets: Hindering Return-Oriented Programming Using In-place
Code Randomization, in: 2012 IEEE Symposium on Security and
Privacy, pp. 601–615. doi:10.1109/SP.2012.41. iSSN: 1081-6011.

[52] Pastrana, S., Tapiador, J., Suarez-Tangil, G., Peris-López, P., 2016a.
AVRAND: A Software-Based Defense Against Code Reuse Attacks
for AVREmbeddedDevices, in: Detection of Intrusions andMalware,
and Vulnerability Assessment. Springer International Publishing. vol-
ume 9721, pp. 58–77. doi:10.1007/978-3-319-40667-1_4. series Title:
Lecture Notes in Computer Science.

[53] Pastrana, S., Tapiador, J., Suarez-Tangil, G., Peris-López, P., 2016b.
AVRAND: A Software-Based Defense Against Code Reuse At-
tacks for AVR Embedded Devices, in: Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 58–77. doi:10.1007/
978-3-319-40667-1_4.

[54] Randolph, M., Diehl,W., 2020. Power Side-Channel Attack Analysis:
A Review of 20 Years of Study for the Layman. Cryptography
4, 15. URL: https://www.mdpi.com/2410-387X/4/2/15, doi:10.3390/
cryptography4020015. number: 2 Publisher: Multidisciplinary Digital
Publishing Institute.

[55] Rane, A., Lin, C., Tiwari, M., 2015. Raccoon: Closing Digital {Side-
Channels} through Obfuscated Execution, in: 26th USENIX Security
Symposium (USENIX Security 15), pp. 431–446.

[56] Rivain, M., Prouff, E., 2010. Provably Secure Higher-Order Masking
of AES, in: Cryptographic Hardware and Embedded Systems, CHES
2010, Springer. pp. 413–427. doi:10.1007/978-3-642-15031-9_28.

[57] Roemer, R., Buchanan, E., Shacham, H., Savage, S., 2012. Return-
Oriented Programming: Systems, Languages, and Applications.
ACMTransactions on Information and System Security 15, 2:1–2:34.
doi:10.1145/2133375.2133377.

[58] Rossi, F., Van Beek, P., Walsh, T., 2006. Handbook of constraint
programming. Elsevier.

[59] Salehi, M., Hughes, D., Crispo, B., 2019. MicroGuard: Securing
Bare-Metal Microcontrollers against Code-Reuse Attacks, in: 2019
IEEE Conference on Dependable and Secure Computing (DSC), pp.
1–8. doi:10.1109/DSC47296.2019.8937667.

[60] Salwan, J., 2020. ROPgadget Tool. URL: http://shell-storm.org/
project/ROPgadget/.

[61] Seibert, J., Okhravi, H., Söderström, E., 2014. Information Leaks
Without Memory Disclosures: Remote Side Channel Attacks on
Diversified Code, in: Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 54–65.

[62] Shacham, H., 2007. The Geometry of Innocent Flesh on the Bone:
Return-into-libcWithout Function Calls (on the x86), in: Proceedings
of the 14th ACM Conference on Computer and Communications
Security, ACM. pp. 552–561.

[63] Shelton, M.A., Samwel, N., Batina, L., Regazzoni, F., Wagner, M.,
Yarom, Y., 2021. Rosita: Towards Automatic Elimination of Power-
Analysis Leakage in Ciphers. Proceedings 2021 Network and Dis-
tributed System Security Symposium doi:10.14722/ndss.2021.23137.
appears in NDSS 2022.

[64] Shi, J., Guan, L., Li, W., Zhang, D., Chen, P., Chen, P., 2022. HARM:
Hardware-assisted continuous re-randomization for microcontrollers,
in: 2022 IEEE european symposium on security and privacy (EuroS
P).

[65] Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C.,
Sadeghi, A., 2013. Just-In-Time Code Reuse: On the Effectiveness of
Fine-Grained Address Space Layout Randomization, in: 2013 IEEE
Symposium on Security and Privacy, pp. 574–588.

[66] Soares, L., Canesche, M., Pereira, F.M.Q., 2023. Side-Channel Elim-
ination via Partial Control-Flow Linearization. ACM Transactions
on Programming Languages and Systems URL: https://dl.acm.org/
doi/10.1145/3594736, doi:10.1145/3594736. just Accepted.

[67] Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.,
2011. On the Expressiveness of Return-into-libc Attacks, in: Sommer,
R., Balzarotti, D., Maier, G. (Eds.), Recent Advances in Intrusion
Detection, Springer. pp. 121–141.

[68] Tsoupidi, R.M., 2017. Two-phase WCET analysis for cache-based
symmetric multiprocessor systems. Master’s thesis. Royal Institute
of Technology KTH.

[69] Tsoupidi, R.M., Castañeda Lozano, R., Baudry, B., 2021. Constraint-
based diversification of jop gadgets. Journal of Artificial Intelligence
Research 72, 1471–1505.

[70] Tsoupidi, R.M., Castañeda Lozano, R., Troubitsyna, E., Papadimi-
tratos, P., 2023. Securing optimized code against power side channels,
in: CSF 2023 - 36th IEEE Computer Security Foundations Sympo-
sium, IEEE. To appear.

[71] Vu, S.T., Cohen, A., De Grandmaison, A., Guillon, C., Heydemann,
K., 2021. Reconciling optimization with secure compilation. Pro-
ceedings of the ACM on Programming Languages 5, 1–30.

[72] Wang, J., Sung, C., Wang, C., 2019. Mitigating power side channels
during compilation, in: Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, pp. 590–601.
doi:10.1145/3338906.3338913.

[73] Winderix, H., Mühlberg, J.T., Piessens, F., 2021. Compiler-Assisted
Hardening of Embedded Software Against Interrupt Latency Side-
Channel Attacks, in: 2021 IEEE European Symposium on Security

Tsoupidi et al.: Preprint submitted to Elsevier Page 16 of 17

http://dx.doi.org/10.1109/SP.2014.25
http://arxiv.org/abs/2304.08848
http://dx.doi.org/10.1145/3332373
http://dx.doi.org/10.1145/3200920
http://dx.doi.org/10.1007/978-3-319-24174-6_23
http://dx.doi.org/10.1007/978-3-319-24174-6_23
http://dx.doi.org/10.46586/tches.v2021.i4.676-707
http://dx.doi.org/10.1109/SP.2017.53
http://dx.doi.org/10.1109/PST.2015.7232966
http://dx.doi.org/10.1109/SP.2012.41
http://dx.doi.org/10.1007/978-3-319-40667-1_4
http://dx.doi.org/10.1007/978-3-319-40667-1_4
http://dx.doi.org/10.1007/978-3-319-40667-1_4
https://www.mdpi.com/2410-387X/4/2/15
http://dx.doi.org/10.3390/cryptography4020015
http://dx.doi.org/10.3390/cryptography4020015
http://dx.doi.org/10.1007/978-3-642-15031-9_28
http://dx.doi.org/10.1145/2133375.2133377
http://dx.doi.org/10.1109/DSC47296.2019.8937667
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/
http://dx.doi.org/10.14722/ndss.2021.23137
https://dl.acm.org/doi/10.1145/3594736
https://dl.acm.org/doi/10.1145/3594736
http://dx.doi.org/10.1145/3594736
http://dx.doi.org/10.1145/3338906.3338913


Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

1 GET_PATHS(n, BCFG):

2 t.empty () # Queue - First path

3 P.empty () # Priority queue - Paths

4 t.insert(n)

5 P.insert(t)

6 W.empty () # final paths

7 while (¬P.isempty () and ¬P.hasCycle ()):
8 p ← P.top() # Top path

9 h ← p.pop() # Last element of path

10 succ ← BCFG.successors(h)

11 if (succ = ∅): # exit node

12 W.push(p)

13 P.remove(p)

14 elif (succ = {s}):

15 p.push(s)

16 P.replace(p)

17 # if this is a sink , we terminate

18 if (W.extend(P). hasSink ()):

19 return W.extend(P)

20 elif (succ = {s1,s2}):

21 p1 ← p.copy()

22 p2 ← p.copy()

23 p1.push(s1)

24 p2.push(s2)

25 P.remove(p)

26 P.insert(p1)

27 P.insert(p2)

28 return W

Figure 8: Path extraction

and Privacy (EuroS P), pp. 667–682. doi:10.1109/EuroSP51992.2021.
00050.

[74] Xu, R., Zhu, L., Wang, A., Du, X., Choo, K.K.R., Zhang, G., Gai, K.,
2018. Side-Channel Attack on a Protected RFID Card. IEEE Access
6, 58395–58404. doi:10.1109/ACCESS.2018.2870663. conferenceName:
IEEE Access.

[75] Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.,
2017. HACL*: A Verified Modern Cryptographic Library, in: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1789–1806.

A. Path-Finding Algorithm
When the branch condition has type secret, i.e. depends

on a secret value, SecDivCon performs an analysis to dis-
cover all paths starting from the branch condition (source)
to a common node (sink). We assume that the program is
split into basic blocks, pieces of code with at most one
branch (apart from function calls) at the end of the block.
To identify all possible paths, we generate the Control-Flow
Graph (CFG) between the basic blocks of the program.

Figure 8 shows the algorithm for extracting the paths
that start from a basic block n (the secret-dependent branch),
given the CFG (BCFG). We use two data structures, a priority
queue, P, which contains all paths under analysis, and a
queue, t that represents the current path and starts with the
first basic block, n (line 4). The priority queue uses the block
order as the priority, with smaller numbers having priority.

At line 5, P is initialized with t. We store the final results in
W (line 6). At line 7, we start a loop that terminates when
there are no paths left to analyze in P or when we find a
cycle. At lines 8 and 9, we get the top element of the top path
from P. Subsequently, the algorithm finds all successor nodes
in the CFG, which correspond to possible basic blocks that
follow the current basic block (line 10). Then, the algorithm
performs different actions depending on the successor nodes.
First, if the current node, h does not have any successors, it
means that h is an exit node, thus, h is the last node in the
current path. Lines 12 and 13 add the path to W and remove it
from the paths under analysis. If h has one successor, s, then
we push the successor to the path and update P (lines 14-16).
Here, we need to check if the new node leads to the current
paths having a sink, i.e. the same final node (line 17). The
last case is when the branch is conditional and there are two
possible destinations. Here, we need to generate two paths p1
and p2 for each of the two destinations and insert them to P

for further analysis (lines 20-27). When the analysis finishes
and the algorithm exits the loop, then it returns W.

This analysis does not support secret-dependent loops or
public-dependent loops nested in secret-dependent branches.
The reason for the latter is that SecDivCon does not im-
plement a loop-insertion transformation. In the presense of
these patterns, the compiler will fail to generate a balanced
program because the constraints are infeasible. To handle
secret-dependent loops, SecDivCon needs to consider addi-
tional transformations, such as loop insertion, and convert-
ing secret-dependent loops to non-terminating loops [66].
This is part of future work.

Tsoupidi et al.: Preprint submitted to Elsevier Page 17 of 17

http://dx.doi.org/10.1109/EuroSP51992.2021.00050
http://dx.doi.org/10.1109/EuroSP51992.2021.00050
http://dx.doi.org/10.1109/ACCESS.2018.2870663

