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Abstract. Modern software deployment process produces software that
is uniform, and hence vulnerable to large-scale code-reuse attacks. Com-
piler-based diversification improves the resilience and security of software
systems by automatically generating different assembly code versions of a
given program. Existing techniques are efficient but do not have a precise
control over the quality of the generated code variants.

This paper introduces Diversity by Construction (DivCon), a constraint-
based compiler approach to software diversification. Unlike previous ap-
proaches, DivCon allows users to control and adjust the conflicting goals
of diversity and code quality. A key enabler is the use of Large Neighbor-
hood Search (LNS) to generate highly diverse assembly code efficiently.

Experiments using two popular compiler benchmark suites confirm that
there is a trade-off between quality of each assembly code version and
diversity of the entire pool of versions. Our results show that DivCon
allows users to trade between these two properties by generating diverse
assembly code for a range of quality bounds. In particular, the experi-
ments show that DivCon is able to mitigate code-reuse attacks effectively
while delivering near-optimal code (< 10% optimality gap).

For constraint programming researchers and practitioners, this paper
demonstrates that LNS is a valuable technique for finding diverse solu-
tions. For security researchers and software engineers, DivCon extends
the scope of compiler-based diversification to performance-critical and
resource-constrained applications.

Keywords: compiler-based software diversification · code-reuse attacks
· constraint programming · embedded systems

1 Introduction

Good software development practices, such as code reuse [19], continuous deploy-
ment, and automatic updates contribute to the emergence of software monocul-
tures [3]. While such monocultures facilitate software distribution, bug reporting,
and software authentication, they also introduce serious risks related to the wide
spreading of attacks against all users that run identical software.
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Software diversification is a method to mitigate the problems caused by uni-
formity. Similarly to biodiversity, software diversification improves the resilience
and security of a software system [2] by introducing diversity in it. Software
diversification can be applied in different phases of the software development cy-
cle, i.e. during implementation, compilation, loading, execution, and more [20].
This paper is concerned with compiler-based diversification, which automatically
generates different assembly code versions from a single source program.

Modern compilers do not merely aim to generate correct code, but also code
that is of high quality. Existing compiler-based diversification techniques are
efficient and effective at diversifying assembly code [20] but do not have a precise
control over its quality and may produce unsatisfactory results. These techniques
(discussed in Section 5) are either based on randomizing heuristics or in high-
level superoptimization methods that do not capture accurately the quality of
the generated code.

This paper introduces Diversity by Construction (DivCon), a compiler-based
diversification approach that allows users to control and adjust the conflicting
goals of quality of each code version and diversity among all versions. DivCon
uses a Constraint Programming (CP)-based compiler backend to generate multi-
ple solutions corresponding to functionally equivalent program variants accord-
ing to an accurate code quality model. The backend models the input program,
the hardware architecture, and the compiler transformations as a constraint
problem, whose solution corresponds to assembly code for the input program.

The use of CP makes it possible to 1) control the quality of the generated
solutions by constraining the objective function, 2) introduce application-specific
constraints that restrict the diversified solutions, and 3) apply sophisticated
search procedures that are particularly suitable for diversification. In particular,
DivCon uses Large Neighborhood Search (LNS) [29], a popular metaheuristic in
multiple application domains, to generate highly diverse solutions efficiently.

Our experiments compiling 17 functions from two popular compiler bench-
mark suites to the MIPS32 architecture confirm that there is a trade-off between
code quality and diversity, and demonstrate that DivCon allows users to navigate
this conflict by generating diverse assembly code for a range of quality bounds.
In particular, the experiments show that DivCon is able to mitigate code-reuse
attacks effectively while guaranteeing a code quality of 10% within optimality.

For constraint programming researchers and practitioners, this paper demon-
strates that LNS is a valuable technique for finding diverse solutions. For security
researchers and software engineers, DivCon extends the scope of compiler-based
diversification to performance-critical and resource-constrained applications, and
provides a solid step towards secure-by-construction software.

Contributions. To summarize, this paper:

– proposes a CP-based technique for compiler-based, quality-aware software
diversification (Section 3);

– shows that LNS is a promising technique for generating highly diverse solu-
tions efficiently (Section 4.3);
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1 0x9d001408 : . . .
2 0x9d00140c : lw $s2 , 4( $sp )
3 0x9d001410 : lw $s4 , 0( $sp )
4 0x9d001414 : j r $t9
5 0x9d001418 : addiu $sp , $sp , 16

(a) Original gadget.

1 0x9d001408 : lw $s2 , 4( $sp )
2 0x9d00140c : nop
3 0x9d001410 : lw $s4 , 0( $sp )
4 0x9d001414 : j r $t9
5 0x9d001418 : addiu $sp , $sp , 16

(b) Diversified gadget.

Fig. 1: Example gadget diversification in MIPS32 assembly code

– quantifies the trade-off between code quality and diversity (Section 4.4); and
– demonstrates that DivCon mitigates code-reuse attacks effectively while pre-

serving high code quality (Section 4.5).

2 Background

This section describes code-reuse attacks (Section 2.1), diversification approaches
in CP (Section 2.2), and combinatorial compiler backends (Section 2.3).

2.1 Code-reuse Attacks

Code-reuse attacks take advantage of memory vulnerabilities, such as buffer
overflows, to reuse program code for malicious purposes. More specifically, code-
reuse attacks insert data into the program memory to affect the control flow of
the program and execute code that is valid but unintended.

Jump-Oriented Programming (JOP)3 is a code-reuse attack [7,4] that com-
bines different code snippets from the original program code to form a Turing
complete language for attackers. These code snippets terminate with a branch
instruction. The building blocks of a JOP attack are gadgets: meta-instructions
that consist of one or multiple code snippets with specific semantics. Figure 1a
shows a JOP gadget found by the ROPgadget tool [27] in a MIPS32 binary. As-
suming that the attacker controls the stack, lines 2 and 3 load attacker data in
registers $s2 and $s4, respectively. Then, line 4 jumps to the address of register
$t9. The last instruction (line 5) is placed in a delay slot and hence it is exe-
cuted before the jump [31]. The semantics of this gadget depends on the attack
payload and might be to load a value to register $s2 or $s4. Then, the program
jumps to the next gadget that resides at the stack address of $t9.

Statically designed JOP attacks use the absolute binary addresses for in-
stalling the attack payload. Hence, a simple change in the instruction schedule
of the program as in Figure 1b prevents a JOP attack designed for Figure 1a.
An attacker that designs an attack based on the binary of the original program
assumes the presence of a gadget (Figure 1a) at position 0x9d00140c. However,
in the diversified version, address 0x9d00140c does not start with the initial lw

3 This paper focuses on JOP due to the characteristics of MIPS32, but could be gener-
alized to other code-reuse attacks such as Return-Oriented Programming (ROP) [28].
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instruction of Figure 1a, and by the end of the execution of the gadget, register
$s2 does not contain the attacker data. In this way, diversification can break the
semantics of the gadget and mitigate an attack against the diversified code.

2.2 Diversity in Constraint Programming

While typical CP applications aim to discover either some solution or the optimal
solution, some applications require finding diverse solutions for various purposes.

Hebrard et al. [13] introduce the MaxDiversekSet problem, which consists
in finding the most diverse set of k solutions, and propose an exact and an
incremental algorithm for solving it. The exact algorithm does not scale to a
large number of solutions [32,16]. The incremental algorithm selects solutions
iteratively by solving a distance maximization problem.

Automatic Generation of Architectural Tests (ATGP) is an application of
CP that requires generating many diverse solutions. Van Hentenryck et al. [32]
model ATGP as aMaxDiversekSet problem and solve it using the incremental
algorithm of Hebrard et. al. Due to the large number of diverse solutions required
(50-100), Van Hentenryck et al. replace the maximization step with local search.

In software diversity, solution quality is of paramount importance. In gen-
eral, earlier CP approaches to diversity are concerned with satisfiability only.
An exception is the approach of Petit et al. [26]. This approach modifies the
objective function for assessing both solution quality and solution diversity, but
does not scale to the large number of solutions required by software diversity.
Ingmar et al. [16] propose a generic framework for modeling diversity in CP. For
tackling the quality-diversity trade-off, they propose constraining the objective
function with the optimal (or best known) cost o. DivCon applies this approach
by allowing solutions p% worse than o, where p is configurable.

2.3 Compiler Optimization as a Combinatorial Problem

A Constraint Satisfaction Problem (CSP) is a problem specification P = ⟨V,U,C⟩,
where V are the problem variables, U is the domain of the variables, and C the
constraints among the variables. A Constraint Optimization Problem (COP),
P = ⟨V,U,C,O⟩, consists of a CSP and an objective function O. The goal of a
COP is to find a solution that optimizes O.

Compilers are programs that generate low-level assembly code, typically op-
timized for speed or size, from higher-level source code. A compilation process
can be modeled as a COP by letting V be the decisions taken during the transla-
tion, C be the constraints imposed by the program semantics and the hardware
resources, and O be the cost of the generated code.

Compiler backends generate low-level assembly code from an Intermediate
Representation (IR), a program representation that is independent of both the
source and the target language. Figure 2 shows the high-level view of a com-
binatorial compiler backend. A combinatorial compiler backend takes as input
the IR of a program, generates and solves a COP, and outputs the optimized
low-level assembly code described by the solution to the COP.
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Fig. 2: High-level view of a combinatorial compiler backend

This paper assumes that programs at the IR level are represented by their
Control-Flow Graph (CFG). A CFG is a representation of the possible execution
paths of a program, where each node corresponds to a basic block and edges
correspond to intra-block jumps. A basic block, in its turn, is a set of abstract
instructions (hereafter just instructions) with no branches besides the end of the
block. Each instruction is associated with a set of operands characterizing its
input and output data. Typical decision variables V of a combinatorial compiler
backend are the issue cycle ci ∈ N0 of each instruction i, the processor instruction
mi ∈ N0 that implements each instruction i, and the processor register ro ∈ N0

assigned to each operand o.
DivCon aims at mitigating code-reuse attacks. Therefore, DivCon considers

the order of the instructions in the final binary, which directly affects the feasi-
bility of code-reuse attacks (see Figures 1a and 1b). For this reason, the diversi-
fication model uses the issue cycle sequence of instructions, c = {c0, c1, ..., cn},
to characterize the diversity among different solutions.

Figure 3a shows an implementation of the factorial function in C where each
basic block is highlighted. Figure 3b shows the IR of the program. The exam-
ple IR contains 10 instructions in three basic blocks: bb.0, bb.1, and bb.2. bb.0
corresponds to initializations, where $a0 holds the function argument n and t1
corresponds to variable f. bb.1 computes the factorial in a loop by accumulating
the result in t1. bb.2 stores the result to $v0 and returns. Some instructions in
the example are interdependent, which leads to serialization of the instruction
schedule. For example, beq (6) consumes data (t3) defined by slti (4) and hence
needs to be scheduled later. Instruction dependencies limit the amount of pos-
sible assembly code versions and can restrict diversity significantly, as seen in
Section 4.3. Finally, Figure 3c shows the arrangement of the issue cycle variables
in the constraint model used by the combinatorial compiler backend.

3 DivCon

This section introduces DivCon, a software diversification method that uses a
combinatorial compiler backend to generate program variants. Figure 4 shows a
high-level view of the diversification process. DivCon uses 1) the optimal solution
to start the search for diversification and 2) the cost of the optimal solution to
restrict the variants within a maximum gap from the optimal. Subsequently,
DivCon generates a number of solutions to the CSP that correspond to diverse
program variants.
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int f a c t o r i a l ( int n) {

int f ;
f = 1 ;

while (n > 0) {
f ∗= n−−;

}

return f ;

}

(a) C code

0 : t1 ← $a0
1 : t2 ← 1
2 : b l e z t1, bb . 2

3 : t2 ← mul t2, t1
4 : t3 ← s l t i t1, 2
5 : t1 ← addi t1, −1
6 : beq t3, %0, bb . 1
7 : b bb . 2

8 : $v0 ← t2
9 : j r $ra

bb.0

bb.1

bb.2

(b) IR

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

bb.0

bb.1

bb.2

(c) Issue cycles

Fig. 3: Factorial function example
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Fig. 4: High-level view of DivCon

The rest of this section describes the diversification approach of DivCon.
Section 3.1 formulates the diversification problem in terms of the constraint
model of a combinatorial compiler backend, Section 3.2 defines the distance
measures, and finally, Section 3.3 describes the search strategy for generating
program variants.

3.1 Problem Description

Let P = ⟨V,U,C⟩ be the compiler backend CSP for the program under compila-
tion, O be the objective function, and o be the cost of the optimal or best known
solution to the COP, ⟨V,U,C,O⟩. Let δ be a function that measures the distance
between two solutions of P (two such functions are defined in Section 3.2). Let
h ∈ N be the minimum pairwise distance and p ∈ R≥0 be the maximum opti-
mality gap specified by the user. Our problem is to find a subset of the solutions
to the CSP, S ⊆ sol(P ), such that ∀s1, s2 ∈ S . s1 ̸= s2 =⇒ δ(s1, s2) ≥ h and
∀s ∈ S .O(s) ≤ (1 + p) · o.

To solve the above problem, DivCon employs the incremental algorithm listed
in Algorithm 1. Starting with the optimal solution yopt, the algorithm adds the
distance constraint for yopt and the optimality constraint with o = yopt(O) (line
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2). Notation δ(y) is used instead of δ(y, s) | ∀s ∈ sol(⟨V,U,C ′⟩) for readability.
While the termination condition is not fulfilled (line 3), the algorithm uses LNS
as described in Section 3.3 to find the next solution y (line 4), adds the next
solution to the solution set S (line 5), and updates the distance constraints based
on the latest solution (line 6). When the termination condition is satisfied, the
algorithm returns the set of solutions S corresponding to diversified assembly
code variants.

Algorithm 1: Incremental algorithm for generating diverse solutions

1 S ← {yopt } , y ← yopt ,
2 C′ ← C ∪ {δ(yopt) ≥ h , O(V ) ≤ (1 + p) · o}
3 while not term cond ( ) // e . g . | S | > k ∨ t im e l im i t ( )
4 y ← solveLNS ( relax ( y ) , ⟨V,U,C′⟩)
5 S ← S ∪ {y}
6 C′ ← C′ ∪ {δ(y) ≥ h}

Figure 5 shows two MIPS32 variants of the factorial example (Figure 3),
which correspond to two solutions of DivCon. The variants differ in two aspects:
first, the beqz instruction is issued one cycle later in Figure 5b than in Figure 5a,
and second, the temporary variable t3 (see Figure 3) is assigned to different
MIPS32 registers ($t0 and $t1).

3.2 Distance Measures

This section defines two alternative distance measures: Hamming Distance (HD)
and Levenshtein Distance (LD). Both distances operate on the schedule of the
instructions, i.e. the order in which the instructions are issued in the CPU.

Hamming Distance (HD). HD is the Hamming distance [12] between the issue
cycle variables of two solutions. Given two solutions s, s′ ∈ sol(P ):

δHD(s, s′) =
n∑

i=0

(s(ci) ̸= s′(ci)), (1)

1 bb . 0 : b l e z $a0 , bb . 2
2 addiu $v0 , $zero , 1
3 bb . 1 : mul $v0 , $v0 , $a0
4 s l t i $t0 , $a0 , 2
5 beqz $t0 , bb . 1
6 addi $a0 , $a0 , −1
7 bb . 2 : j r $ra
8 nop

(a) Variant 1.

1 bb . 0 : b l e z $a0 , bb . 2
2 addiu $v0 , $zero , 1
3 bb . 1 : mul $v0 , $v0 , $a0
4 s l t i $t1 , $a0 , 2
5 nop
6 beqz $t1 , bb . 1
7 addi $a0 , $a0 , −1
8 bb . 2 : j r $ra
9 nop

(b) Variant 2.

Fig. 5: Two MIPS32 variants of the factorial example in Figure 3
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where n is the maximum number of instructions.
Consider Figure 1b, a diversified version of the gadget in Figure 1a. The only

instruction that differs from Figure 1a is the instruction at line 1 that is issued
one cycle before. The two examples have a HD of one, which in this case is
enough for breaking the functionality of the original gadget (see Section 2.1).

Levenshtein Distance (LD). LD (or edit distance) measures the minimum num-
ber of edits, i.e. insertions, deletions, and replacements, that are necessary for
transforming one instruction schedule to another. Compared to HD, which con-
siders only replacements, LD also considers insertions and deletions. To under-
stand this effect, consider Figure 5. The two gadgets differ only by one nop

operation but HD gives a distance of three, whereas LD gives one, which is more
accurate. LD takes ordered vectors as input, and thus requires an ordered repre-
sentation (as opposed to a detailed schedule) of the instructions. Therefore, LD
uses vector c−1 = channel(c), a sequence of instructions ordered by their issue
cycle. Given two solutions s, s′ ∈ sol(P ):

δLD(s, s′) = levenshtein distance(s(c−1), s′(c−1)), (2)

where levenshtein distance is the WagnerFischer algorithm [33] with time
complexity O(nm), where n and m are the lengths of the two sequences.

3.3 Search

Unlike previous CP approaches to diversity, DivCon employs Large Neighbor-
hood Search (LNS) for diversification. LNS is a metaheuristic that defines a
neighborhood, in which search looks for better solutions, or, in our case, dif-
ferent solutions. The definition of the neighborhood is through a destroy and
a repair function. The destroy function unassigns a subset of the variables in
a given solution and the repair function finds a new solution by assigning new
values to the destroyed variables.

In DivCon, the algorithm starts with the optimal solution of the combi-
natorial compiler backend. Subsequently, it destroys a part of the variables and
continues with the model’s branching strategy to find the next solution, applying
a restart after a given number of failures. LNS uses the concept of neighborhood,
i.e. the variables that LNS may destroy at every restart. To improve diversity,
the neighborhood for DivCon consists of all decision variables, i.e. the issue cy-
cles c, the instruction implementations m, and the registers r. Furthermore, LNS
depends on a branching strategy to guide the repair search. To improve security
and allow LNS to select diverse paths after every restart, DivCon employs a
random variable-value selection branching strategy as described in Table 1b.

4 Evaluation

The evaluation of DivCon addresses four main questions:
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– RQ1. What is the scalability of the distance measures in generating multiple
program variants? Here, we evaluate which of the distance measures is the
most appropriate for software diversification.

– RQ2. How effective and how scalable is LNS for code diversification? Here,
we investigate LNS as an alternative approach to diversity in CP.

– RQ3. How does code quality relate to code diversity and what are the in-
volved trade-offs?

– RQ4. How effective is DivCon at mitigating code-reuse attacks? This ques-
tion is the main application of CP-based diversification in this work.

4.1 Experimental Setup

Implementation. DivCon is implemented as an extension of Unison [6], and is
available at https://github.com/romits800/divcon. Unison implements two
backend transformations: instruction scheduling and register allocation. DivCon
employs Unison’s solver portfolio that includes Gecode v6.2 [11] and Chuffed
v0.10.3 [8] to find optimal solutions, and Gecode v6.2 only for diversification.
The LLVM compiler [21] is used as a front-end and IR-level optimizer.

Benchmark functions and platform. The evaluation uses 17 functions sampled
randomly from MediaBench [22] and SPEC CPU2006 [30], two benchmark suites
widely employed in embedded and general-purpose compiler research. The size
of the functions is limited to between 10 and 30 instructions (with a median of 20
instructions) to keep the evaluation of all methods and distance measures feasible
regardless of their computational cost. Table 2 lists the ID, application, name,
basic blocks (b), and instructions (i) of each sampled function. The functions are
compiled to MIPS32 assembly code. MIPS32 is a popular architecture within
embedded systems and the security-critical Internet of Things [1].

Host platform. All experiments run on an Intel R⃝CoreTMi9-9920X processor at
3.50GHz with 64GB of RAM running Debian GNU/Linux 10 (buster). Each of
the experiments runs for 20 random seeds. The results show the mean value and
the standard deviation from these experiments. The available virtual memory
for each of the executions is 10GB. The experiments for different random seeds
run in parallel (5 seeds at a time), with two unique cores available for every seed
for overheating reasons. DivCon runs as a sequential program.

Table 1: Original and Random branching strategies
(a) Original branching strategy.

Variable Var. Selection Value Selection

ci in order min. val first
mi in order min. val first
ro in order randomly

(b) Random branching strategy.

Variable Var. Selection Value Selection

ci randomly randomly
mi randomly randomly
ro randomly randomly

https://github.com/romits800/divcon
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Table 2: Benchmark functions

ID app function name b i
b1 sphinx3 ptmr init 1 10
b2 gcc ceil log2 1 14
b3 mesa glIndexd 1 14
b4 h264ref symbol2uvlc 1 15
b5 gobmk autohelperowl defen.. 1 23
b6 mesa glVertex2i 1 23
b7 hmmer AllocFancyAli 1 25
b8 gobmk autohelperowl vital.. 1 27
b9 gobmk autohelperpat1088 1 29
b10 gobmk autohelperowl attac.. 1 30
b11 gobmk get last player 3 13
b12 h264ref UpdateRandomAccess 3 16
b13 gcc xexit 3 17
b14 gcc unsigned condition 3 24
b15 sphinx3 glist tail 4 10
b16 gcc get frame alias set 5 20
b17 gcc parms set 5 25

Table 3: Scalability of δHD, δLD

ID
δHD δLD

t(s) num t(s) num
b1 0.1±0.2 26 131.2±131.4 26
b2 1.0±0.1 200 - 68
b3 1.1±0.1 200 - 58
b4 0.7±0.0 200 - 73
b5 2.3±0.3 200 - 38
b6 2.5±0.2 200 - 35
b7 2.0±0.3 200 - 37
b8 3.8±0.8 200 - 35
b9 4.0±0.6 200 - 28
b10 4.5±0.7 200 - 27
b11 1.3±0.1 200 - 56
b12 1.1±0.2 200 - 47
b13 0.8±0.1 200 - 91
b14 1.8±0.3 200 - 27
b15 1.7±0.2 200 - 60
b16 2.7±0.4 200 - 31
b17 1.6±0.2 200 - 35

Algorithm Configuration. The experiments focus on speed optimization and aim
to generate 200 variants within a timeout. Parameter h in Algorithm 1 is set to
one because even small distance between variants is able to break gadgets (see
Figure 1). LNS uses restart-based search with a limit of 500 failures, and a relax
rate of 70%. The relax rate is the probability that LNS destroys a variable at ev-
ery restart, which affects the distance between two subsequent solutions. A higher
relax rate increases diversity but requires more solving effort. We have found ex-
perimentally that 70% is an adequate balance between the two. All experiments
are available at https://github.com/romits800/divcon_experiments.

4.2 RQ1. Scalability of the Distance Measures

The ability to generate a large number of variants is paramount for software
diversification. This section compares the distance measures introduced in Sec-
tion 3.2 with regards to scalability.

Table 3 presents the results of the distance evaluation, where a time limit of
10 minutes and optimality gap of p = 10% are used. For each distance measure
(δHD and δLD) the table shows the diversification time t, in seconds (or “-” if
the algorithm is not able to generate 200 variants) and the number of generated
variants num within the time limit.

The results show that for δHD, DivCon is able to generate 200 variants for all
benchmarks except b1, which has exactly 26 variants. The diversification time
for δHD is less than 5 seconds for all benchmarks. Distance δLD, on the other
hand, is not able to generate 200 variants for any of the benchmarks within the
time limit. This poor scalability of δLD is due to the quadratic complexity of its
implementation [33], whereas HD can be implemented linearly. Consequently,
the rest of the evaluation uses δHD.

https://github.com/romits800/divcon_experiments
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4.3 RQ2. Scalability and Diversification Effectiveness of LNS

This section evaluates the diversification effectiveness and scalability of LNS
compared to incremental MaxDiversekSet (where the first solution is found
randomly and the maximization step uses the branching strategy from Table 1a)
and Random Search (RS) (which uses the branching strategy from Table 1b).

To measure the diversification effectiveness of these methods, the evaluation
uses the relative pairwise distance of the solutions. Given a set of solutions
S and a distance measure δ, the pairwise distance d of the variants in S is

d(δ, S) =
∑|S|

i=0

∑|S|
j>i δ(si, sj) /

(|S|
2

)
. The larger this distance, the more diverse

the solutions are, and thus, diversification is more effective. Table 4 shows the
pairwise distance d and diversification time t for each benchmark and method,
where the experiment uses a time limit of 30 minutes and optimality gap of
p = 10%. The best values of d (larger) and t (lower) are marked in bold for
the completed experiments, whereas incomplete experiments are highlighted in
italic and their number of variants in parenthesis.

Table 4: Distance and Scalability of LNS with RS and MaxDiversekSet

ID
MaxDiversekSet RS LNS (0.7)
d t(s) d t(s) d t(s)

b1 4.1±0.0 0.2±0.0 (26) 4.1±0.0 0.0±0.0 (26) 4.1±0.0 0.1±0.2 (26)
b2 10.8±0.0 761.8±10.1 6.4±0.2 0.6±0.1 8.6±0.6 1.0±0.1
b3 14.6±0.0 - (21) 5.8±0.1 0.6±0.1 10.8±0.8 1.0±0.1
b4 14.4±0.0 - (19) 4.3±0.1 0.2±0.0 12.1±0.3 0.6±0.0
b5 22.0±0.0 - (2) 4.3±0.3 0.5±0.0 16.1±1.1 2.2±0.3
b6 22.9±0.4 - (2) 5.3±0.0 1.0±0.1 16.4±0.6 2.4±0.2
b7 24.9±0.1 - (6) 4.5±0.2 0.4±0.0 18.1±1.2 1.9±0.3
b8 24.8±0.4 - (2) 6.5±0.2 3.5±0.5 17.2±0.9 3.8±0.8
b9 26.0±0.0 - (2) 4.2±0.3 0.4±0.0 19.8±0.7 3.9±0.6
b10 28.0±0.0 - (2) 6.0±0.0 5.3±1.0 20.1±1.1 4.5±0.7
b11 13.8±0.0 356.9±8.2 5.3±0.1 0.2±0.0 10.1±1.0 1.2±0.1
b12 21.5±0.1 - (5) 6.4±0.9 0.2±0.0 14.9±1.0 1.0±0.2
b13 17.4±0.0 - (122) 6.7±0.0 0.9±0.1 12.0±0.9 0.7±0.1
b14 30.1±0.0 - (20) 7.5±0.2 0.2±0.0 24.9±0.7 1.8±0.3
b15 - - 2.6±0.3 0.1±0.0 20.2±0.5 1.6±0.2
b16 - - 5.6±0.4 0.3±0.0 21.3±0.8 2.6±0.4
b17 - - 2.9±0.1 - (91) 28.1±1.5 1.6±0.2

The scalability results (t(s)) show that RS and LNS are scalable (generate the
maximum 200 variants for almost all benchmarks), whereas MaxDiversekSet
scales poorly (cannot generate 200 variants for any benchmark but b2 and b11 ).
Both b2 and b11 have a small search space (few, highly interdependent in-
structions), which leads to restricted diversity but facilitates solving. For b1,
all instructions are interdependent on each other, which forces a linear sched-
ule and results in only 26 possible variants (given p = 10%). On the other
end, MaxDiversekSet is not able to find any variants for b15, b16, and b17.
These benchmarks have many basic blocks resulting in a more complex objec-
tive function. For the largest benchmark (b17 ), only LNS is able to scale up to
200 solutions. LNS is generally slower than RS, but for both LNS and RS all
benchmarks have a diversification time less than six seconds.

The diversity results (d) show that LNS is more effective at diversifying than
RS. The improvement of LNS over RS ranges from 35% (for b2 ) to 675% (for
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b15 ). In the two cases whereMaxDiversekSet terminates (benchmarks b2 and
b11 ), it generates the most diverse code, as can be expected.

In summary, LNS offers an attractive balance between scalability and diver-
sification effectiveness: it is close in scalability to, and sometimes improves, the
overly fastest method (RS), but it is significantly and consistently more effective
at diversifying code.

4.4 RQ3. Trade-off Between Code Quality and Diversity

A key advantage of using a CP-based compiler approach for software diversity is
the ability to control the quality of the generated solutions. This ability enables
control over the relation between the quality of each individual solution and the
diversity of the entire pool of solutions. Insisting in optimality limits the num-
ber of possible diversified variants and their pairwise distance, whereas relaxing
optimality allows higher diversity.

Table 5 shows the pairwise distance d (defined in Section 4.3), and the num-
ber of generated variants num, for all benchmarks and different values of the
optimality gap p ∈{0%, 5%, 10%, 20%}. LNS is used with a time limit of 10
minutes. The best values of d are marked in bold.

Table 5: Solution diversity for different optimality gap values

ID
0% 5% 10% 20%

d num d num d num d num
b1 - - - - 4.1±0.0 26 6.5±0.1 200
b2 3.5±0.0 9 6.7±0.4 200 8.6±0.6 200 10.0±0.8 200
b3 7.0±0.1 200 9.4±0.5 200 10.8±0.8 200 14.8±1.0 200
b4 7.8±0.2 200 10.1±0.3 200 12.1±0.3 200 14.0±0.2 200
b5 8.4±0.1 200 11.9±0.7 200 16.1±1.1 200 19.7±0.6 200
b6 10.8±0.1 200 14.7±0.4 200 16.4±0.6 200 20.9±0.8 200
b7 11.3±0.3 200 13.8±0.7 200 18.1±1.2 200 22.8±1.1 200
b8 11.0±0.1 200 13.6±0.6 200 17.2±0.9 200 22.4±1.1 200
b9 12.7±0.1 200 17.7±0.8 200 19.8±0.7 200 24.4±0.6 200
b10 13.7±0.1 200 18.1±0.9 200 20.1±1.1 200 26.3±0.6 200
b11 2.0±0.0 4 6.6±0.1 200 10.1±1.0 200 14.2±0.9 200
b12 3.8±0.0 10 10.3±1.2 200 14.9±1.0 200 19.8±1.0 200
b13 2.1±1.3 4 10.1±0.9 200 12.0±0.9 200 15.7±1.2 200
b14 3.6±0.0 24 21.0±0.6 200 24.9±0.7 200 29.0±0.5 200
b15 2.4±0.0 8 15.6±0.6 200 20.2±0.5 200 23.5±1.4 200
b16 4.1±0.0 44 15.1±1.1 200 21.3±0.8 200 30.7±0.9 200
b17 7.5±0.2 200 20.3±1.4 200 28.1±1.5 200 38.4±0.9 200

The first interesting observation is that even with no degradation of quality
(p = 0%), DivCon is able to generate a large number of variants for a sig-
nificant fraction of the benchmarks. These include functions with a relatively
large solution space, typically with a few large basic blocks where instructions
are relatively independent of each other (b3-b10 and b17 ). On the other hand,
benchmarks with small basic blocks and many instruction dependencies (b1, b2,
and b11-b16 ) provide fewer options for diversification, which results in a limited
number of optimal variants.

Second, we observe that as soon as we slightly relax the constraint over
optimality (p = 5%), diversity radiates and DivCon generates 200 variants for all
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benchmarks except b1. Then, the more we increase the optimality gap, the larger
the diversification space grows and the distance between the variants increases.
Table 5 illustrates one of the key contributions of DivCon: the ability to explore
the trade-off between optimal solutions and highly diverse solutions.

In summary, depending on the characteristics of the compiled code, it is
possible to generate a large number of variants without sacrificing optimality,
and the code quality can be adjusted to further improve diversity if required by
the targeted application.

4.5 RQ4. Code-Reuse Mitigation Effectiveness

Software Diversity has various applications in security, including mitigating code-
reuse attacks. To measure the level of mitigation that DivCon achieves, we assess
the gadget survival rate srate(si, sj) between two variants si, sj ∈ S, where
S is the set of generated variants. This metric determines how many of the
gadgets of variant si appear at the same position on the other variant sj , that
is srate(si, sj) = |gad(si) − gad(sj)| / |gad(si)|, where gad(si) are the gadgets
in solution si. The procedure for computing srate(si, sj) is as follows: 1) run
ROPgadget [27] to find the set of gadgets gad(si) in solution si, and 2) for every
g ∈ gad(si), check whether there exists a gadget identical to g at the same
address of sj . This comparison is syntactic after removing all nop instructions.

This section compares the srate for all permutations of pairs in S, for all
benchmarks, and for different values of the optimality gap using a time limit
of 10 minutes. Low srate corresponds to higher mitigation effectiveness because
code-reuse attacks based on gadgets in one variant have lower chances of locating
the same gadgets in the other variants (see Figure 1).

Table 6 summarizes the gadget survival distribution for all benchmarks and
different values of the optimality gap (0%, 5%, 10%, and 20%). Due to its skew-
ness, the distribution of srate is represented as a histogram with four buckets
(0%, (0%, 10%], (10%,40%], and (40%, 100%]) rather than summarized using
common statistical measures. Here the best is a srate(si, sj) of 0%, which means
that sj does not contain any gadgets that exist in si, whereas a srate(si, sj) in
range (40%,100%] means that sj shares more than 40% of the gadgets of si. The
values in bold correspond to the mode(s) of the histogram.

First, we notice that DivCon can generate some pairs of variants that share
no gadget, even without relaxing the constraint of optimality (p = 0%). This
indicates that the pareto front of optimal code naturally includes software diver-
sity that is good for security. Second, the results show that this effectiveness can
be further increased by relaxing the constraint on code quality, with diminish-
ing returns beyond p = 10%. For p = 0%, there are 10 benchmarks dominated
by a 0% survival rate, whereas there are 7 benchmarks dominated by a weak
10%−40%-survival rate. The latter are still considered vulnerable to code-reuse
attacks. However, increasing the optimality gap to just p = 5% makes 0% sur-
vival rate the dominating bucket for all benchmarks, and further increasing the
gap to 10% and 20% increases significantly the number of pairs where no single
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Table 6: Gadget survival rate for different optimality gap values

ID
0% 5% 10% 20%

=0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num

b1 - - - - - - - - - - 84 3 3 10 26 94 4 2 1 200
b2 - - 69 31 9 60 12 23 4 200 76 11 12 1 200 81 9 10 - 200
b3 66 15 18 1 200 71 14 15 1 200 73 13 13 1 200 77 14 9 - 200
b4 94 6 - - 200 96 4 - - 200 96 4 - - 200 98 2 - - 200
b5 90 1 9 - 200 93 2 5 - 200 95 2 3 - 200 95 3 2 - 200
b6 88 5 7 1 200 89 5 6 - 200 90 4 6 - 200 91 4 5 - 200
b7 48 1 48 3 200 74 5 21 1 200 83 6 11 - 200 89 6 5 - 200
b8 46 - 51 3 200 57 4 36 2 200 74 3 21 1 200 81 4 14 1 200
b9 42 - 56 2 200 66 9 24 1 200 73 8 18 - 200 83 7 9 - 200
b10 47 - 50 3 200 65 2 30 2 200 73 4 22 1 200 82 5 13 1 200
b11 38 - 61 1 4 66 3 31 - 200 68 9 23 - 200 83 7 10 - 200
b12 94 - 5 1 10 99 1 - - 200 99 - - - 200 99 1 - - 200
b13 43 9 34 14 4 69 20 11 - 194 69 21 10 - 200 71 19 10 - 200
b14 - - 78 22 24 60 23 17 - 200 63 22 15 - 200 70 19 11 - 200
b15 41 53 5 - 8 97 2 1 - 200 98 1 1 - 200 98 1 1 - 200
b16 64 28 6 - 44 76 21 2 - 200 82 17 1 - 200 90 9 1 - 200
b17 33 66 1 - 200 61 39 - - 200 75 25 - - 200 87 13 - - 200

gadget is shared. For example, at p = 10% the rate of pairs that do not share
any gadgets ranges from 63% (b14 ) to 99% (b12 ).

Related approaches (discussed in Section 5) report the average srate across
all pairs for different benchmark sets. Pappas et al.’s zero-cost approach [25]
achieves an average srate between 74%−83% without code degradation, compa-
rable to DivCon’s 41%−99% at p = 0%. Homescu et al.’s statistical approach [15]
reports an average srate between 82% − 100% with a code degradation of less
than 5%, comparable to DivCon’s 83% − 100% at p = 5%. Both approaches
report results on larger code bases that exhibit more opportunities for diversi-
fication. We expect that DivCon would achieve higher overall survival rates on
these code bases compared to the benchmarks used in this paper.

5 Related Work

There are many approaches to software diversification against cyberattacks. The
majority apply randomized transformations at different stages of the software
development, while a few exceptions use search-based techniques [20]. This sec-
tion focuses on quality-aware software diversification approaches.

Superdiversifier [17] is a search-based approach for software diversification
against cyberattacks. Given an initial instruction sequence, the algorithm gen-
erates a random combination of the available instructions and performs a ver-
ification test to quickly reject non equivalent instruction sequences. For each
non-rejected sequence, the algorithm checks semantic equivalence between the
original and the generated instruction sequences using a SAT solver. Superdi-
versifier affects the code execution time and size by controlling the length of the
generated sequence. Along the same lines, Lundquist et al. [24,23] use program
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synthesis for generating program variants against cyberattacks, but no results
are available yet. In comparison, DivCon uses a combinatorial compiler back-
end that measures the code quality using a more accurate cost model that also
considers other aspects, such as execution frequencies.

Most diversification approaches use randomized transformations to gener-
ate multiple program variants [20]. Unlike DivCon, the majority of these ap-
proaches do not control the quality of the generated variants during diversifica-
tion but rather evaluate it afterwards [10,34,18,14,5,9]. However, there are a few
approaches that control the code quality during randomization.

Some compiler-based diversification approaches restrict the set of program
transformations to control the quality of the generated code [9,25]. For exam-
ple, Pappas et al. [25] perform software diversification at the binary level and
apply three zero-cost transformations: register randomization, instruction sched-
ule randomization, and function shuffling. In contrast, DivCon’s combinatorial
approach allows it to control the aggressiveness and potential cost of its trans-
formations: a cost overhead limit of 0% forces DivCon to apply only zero-cost
transformations; a larger limit allows DivCon to apply more aggressive transfor-
mations, potentially leading to higher diversity.

Homescu et al. [15] perform only garbage (nop) insertion, and use a profile-
guided approach to reduce the overhead. To do this, they control the nop inser-
tion probability based on the execution frequency of different code sections. In
contrast, DivCon’s cost model captures different execution frequencies, which al-
lows it to perform more aggressive transformations in non-critical code sections.

6 Conclusion and Future Work

This paper introduces DivCon, a CP approach to compiler-based, quality-aware
software diversification against code-reuse attacks. Our experiments show that
LNS is a promising technique for a CP-based exploration of the space of diverse
program, with a fine-grained control on the trade-off between code quality and
diversity. In particular, we show that the set of optimal solutions naturally con-
tains a set of diverse solutions, which increases significantly when relaxing the
constraint of optimality. Our experiments demonstrate that the diverse solutions
generated by DivCon are effective to mitigate code-reuse attacks.

Future work includes investigating different distance measures to further re-
duce the gadget survival rate, improving the overall scalability of DivCon in the
face of larger programs and larger values of parameter k, and examining the
effectiveness of DivCon against an actual code-reuse exploit.
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