
Journal of Artificial Intelligence Research 72 (2021) 1471-1505 Submitted 03/2021; published 12/2021

Constraint-based Diversification of JOP Gadgets

Rodothea Myrsini Tsoupidi tsoupidi@kth.se
Royal Institute of Technology, KTH,
Stockholm, Sweden

Roberto Castañeda Lozano roberto.castaneda@ed.ac.uk
University of Edinburgh,
Edinburgh, United Kingdom

Benoit Baudry baudry@kth.se

Royal Institute of Technology, KTH,

Stockholm, Sweden

Abstract

Modern software deployment process produces software that is uniform, and hence
vulnerable to large-scale code-reuse attacks, such as Jump-Oriented Programming (JOP)
attacks. Compiler-based diversification improves the resilience and security of software
systems by automatically generating different assembly code versions of a given program.
Existing techniques are efficient but do not have a precise control over the quality, such as
the code size or speed, of the generated code variants.

This paper introduces Diversity by Construction (DivCon), a constraint-based compiler
approach to software diversification. Unlike previous approaches, DivCon allows users to
control and adjust the conflicting goals of diversity and code quality. A key enabler is the use
of Large Neighborhood Search (LNS) to generate highly diverse assembly code efficiently.
For larger problems, we propose a combination of LNS with a structural decomposition
of the problem. To further improve the diversification efficiency of DivCon against JOP
attacks, we propose an application-specific distance measure tailored to the characteristics
of JOP attacks.

We evaluate DivCon with 20 functions from a popular benchmark suite for embedded
systems. These experiments show that DivCon’s combination of LNS and our application-
specific distance measure generates binary programs that are highly resilient against JOP
attacks (they share between 0.15% to 8% of JOP gadgets) with an optimality gap of ≤
10%. Our results confirm that there is a trade-off between the quality of each assembly
code version and the diversity of the entire pool of versions. In particular, the experiments
show that DivCon is able to generate binary programs that share a very small number of
gadgets, while delivering near-optimal code.

For constraint programming researchers and practitioners, this paper demonstrates that
LNS is a valuable technique for finding diverse solutions. For security researchers and soft-
ware engineers, DivCon extends the scope of compiler-based diversification to performance-
critical and resource-constrained applications.

1. Introduction

Common software development practices, such as code reuse (Krueger, 1992) and automatic
updates, contribute to the emergence of software monocultures (Birman & Schneider, 2009).
While such monocultures facilitate software distribution, bug reporting, and software au-

c©2021 AI Access Foundation. All rights reserved.



Tsoupidi, Castañeda Lozano, & Baudry

thentication, they also introduce serious risks related to the wide spreading of attacks against
all users that run identical software.

Embedded devices, such as controllers in cars or medical implants, which manage sensi-
tive and safety-critical data, are particularly exposed to this class of attacks (Kornau et al.,
2010; Bletsch et al., 2011). Yet, this type of software usually cannot afford expensive defense
mechanisms (Salehi et al., 2019).

Software diversification is a method to mitigate the problems caused by software mono-
cultures, initially explored in the seminal work of Cohen (1993) and Forrest, Somayaji, and
Ackley (1997). Similarly to biodiversity, software diversification improves the resilience and
security of a software system (Baudry & Monperrus, 2015) by introducing diverse variants
of code in it. Software diversification can be applied in different phases of the software devel-
opment cycle, i.e. during implementation, compilation, loading, or execution (Larsen et al.,
2014). This paper is concerned with compiler-based diversification, which automatically
generates different binary code versions from a single source program.

Modern compilers do not merely aim to generate correct code, but also code that is of
high quality. There exists a variety of compilation techniques to optimize code for speed or
size (Ashouri et al., 2018). However, there exist few compiler techniques that target code di-
versification. These techniques are effective at synthesizing diverse variants of assembly code
for one source program (Larsen et al., 2014). However, they do not have a precise control
over other binary code quality metrics, such as speed or size. These techniques (discussed
in Section 5) are either based on randomizing heuristics or in high-level superoptimization
methods that do not capture accurately the quality of the generated code.

This paper introduces Diversity by Construction (DivCon), a compiler-based diversifi-
cation approach that allows users to control and adjust the conflicting goals of quality of
each code version and diversity among all versions. DivCon uses a Constraint Program-
ming (CP)-based compiler backend to generate diverse solutions corresponding to function-
ally equivalent program variants according to an accurate code quality model. The backend
models the input program, the hardware architecture, and the compiler transformations as
a constraint problem, whose solutions correspond to assembly code for the input program.
The synthesis of code diversity is motivated by Jump-Oriented Programming (JOP) attacks
(Checkoway et al., 2010; Bletsch et al., 2011) that exploit the presence of certain binary
code snippets, called JOP gadgets, to craft an exploit. Our goal is to generate binary vari-
ants that are functionally equivalent, yet do not have the same gadgets and hence cannot
be targeted by the exact same JOP attack.

The use of CP makes it possible to 1) control the quality of the generated solutions
by constraining the objective function, 2) introduce constraints tailored towards JOP gad-
gets, and 3) apply search procedures that are particularly suitable for diversification. More
specifically, we propose the use of Large Neighborhood Search (LNS) (Shaw, 1998), a pop-
ular metaheuristic in multiple application domains, to generate highly diverse binaries. For
larger problems, we investigate a combination of LNS with a structural decomposition of
the problem. Focusing on our application, DivCon provides different distance measures
that trade diversity for scalability.

Our experiments compiling 14 functions from a popular embedded systems suite to the
MIPS32 architecture confirm that there is a trade-off between code quality and diversity.
We demonstrate that DivCon allows users to navigate this space of near-optimal, diverse

1472



Constraint-based Diversification of JOP Gadgets

assembly code for a range of quality bounds. We show that the Paretto front of optimal
solutions synthesized by DivCon with LNS and a distance measure tailored against JOP
attacks, naturally includes code variants with few common gadgets. We show that DivCon
is able to synthesize significantly diverse variants, while guaranteeing a code quality of 10%
within optimality. We further evaluate an additional set of six functions, which belong to
the set of the 30% largest functions of the benchmark suite, to investigate the scalability of
DivCon.

For constraint programming researchers and practitioners, this paper demonstrates that
LNS is a valuable technique for finding diverse solutions. For security researchers and soft-
ware engineers, DivCon extends the scope of compiler-based diversification to performance-
critical and resource-constrained applications, and provides a solid step towards secure-by-
construction software.

To summarize, the main contributions of this paper are:

• the first CP-based technique for compiler-based, quality-aware software diversification;
• an experimental demonstration of the effectiveness of LNS at generating highly diverse

solutions efficiently;
• the evaluation of DivCon on a wide set of benchmarks of different sizes, including

large functions of up to 500 instructions;
• a quantitative assessment of the technique to mitigate code-reuse attacks effectively,

while preserving high code quality; and
• a publicly available tool for constraint-based software diversification1.

This paper extends our previous work (Tsoupidi, Castañeda Lozano, & Baudry, 2020).
We extend our investigation of LNS for code diversification with Decomposition-based Large
Neighborhood Search (DLNS) (Sections 3.2, 4.2, and 4.4), a specific LNS-based approach
for generating diverse solutions for larger programs. We propose a new distance measure
to explore the space of program variants, which specifically targets JOP gadgets: Gadget
Distance (GD) (Sections 3.3, 4.3, and 4.5). We perform a new set of experiments to compare
the diversification algorithms and the distance measures, with 19 new benchmark functions
up to 16 times larger than our previous dataset, providing new insights on the scalability of
our approach (Section 4.2). Finally, we add a case study on a voice compression application,
which provides a more complete picture on whole-program, multi-function diversification
using DivCon (Section 4.7).

2. Background

This section describes code-reuse attacks (Section 2.1), diversification approaches in CP
(Section 2.3), and combinatorial compiler backends (Section 2.4).

2.1 JOP Attacks

Code-reuse attacks take advantage of memory vulnerabilities, such as buffer overflows, to
reuse program legitimate code and repurpose it for malicious usages. More specifically,
code-reuse attacks insert data into the program memory to affect the control flow of the

1. https://github.com/romits800/divcon

1473

 https://github.com/romits800/divcon


Tsoupidi, Castañeda Lozano, & Baudry

1 0x9d001408: ...

2 0x9d00140c: lw $s2 , 4($sp)

3 0x9d001410: lw $s4 , 0($sp)

4 0x9d001414: jr $t9

5 0x9d001418: addiu $sp , $sp , 16

(a) Original gadget.

1 0x9d001408: lw $s2 , 4($sp)

2 0x9d00140c: nop

3 0x9d001410: lw $s4 , 0($sp)

4 0x9d001414: jr $t8

5 0x9d001418: addiu $sp , $sp , 16

(b) Diversified gadget.

Figure 1: Example gadget diversification in MIPS32 assembly code

program. Consequently, the original, valid code is executed but the modified control flow
triggers and executes code that is valid but unintended.

Return-Oriented Programming (ROP) (Shacham, 2007) is a code-reuse attack that com-
bines different snippets from the original binary code to form a Turing complete language
for attackers. The building blocks of a ROP attack are the gadgets: meta-instructions that
consist of one or multiple code snippets with specific semantics. The original publication
considers the x86 architecture and the gadgets terminate with a ret instruction. Later pub-
lications generalize ROP for different architectures and in the absence of ret instructions,
such as JOP (Checkoway et al., 2010; Bletsch et al., 2011). This paper focuses on JOP
due to the characteristics of MIPS32, but could be generalized to other code-reuse attacks.
The code snippets for a JOP attack terminate with a branch instruction. Figure 1a shows
a JOP gadget found by the ROPgadget tool (Salwan, 2020) in a MIPS32 binary. Assuming
that the attacker controls the stack, lines 2 and 3 load attacker data in registers $s2 and
$s4, respectively. Then, line 4 jumps to the address of register $t9. The last instruction
(line 5) is placed in a delay slot and hence it is executed before the jump (Sweetman, 2006).
The semantics of this gadget depends on the attack payload and might be to load a value
to register $s2 or $s4. Then, the program jumps to the next gadget, which resides at the
stack address of $t9.

Statically designed JOP attacks use the absolute binary addresses for installing the
attack payload. Hence, a simple change in the instruction schedule of the program as in
Figure 1b prevents a JOP attack designed for Figure 1a. An attacker that designs an attack
based on the binary of the original program assumes the presence of a gadget (Figure 1a) at
position 0x9d00140c. However, in the diversified version, address 0x9d00140c does not start
with the initial lw instruction of Figure 1a, and by the end of the execution of the gadget,
register $s2 does not contain the attacker data. Moreover, by assigning a different jump
target register, $t8, the next target will not be the one expected by the attacker. In this
way, diversification can break the semantics of the gadget and mitigate an attack against
the diversified code.

2.2 Attack Model

We assume an attack model, where the attacker 1) knows the original C code of the appli-
cation, but 2) does not know the exact variant that each user runs, i.e. we assume that each
user runs a different diversified version of the program, as suggested by Larsen et al. (2014).
Also, 3) we assume the existence of a memory corruption vulnerability that enables a buffer
overflow. The defenses of the users include, Data Execution Prevention (DEP) (or W ⊕X),

1474



Constraint-based Diversification of JOP Gadgets

which ensures that no writable memory (W ) is executable (X) and vice versa. This ensures
that the attacker is not able to execute code that is directly inserted into the executable
code memory, for example the program stack.

For more advanced attacks, like JIT-ROP attacks (Snow, Monrose, Davi, Dmitrienko,
Liebchen, & Sadeghi, 2013), we discuss later (Section 4.8) possible configurations using our
approach.

2.3 Diversity in Constraint Programming

While typical CP applications aim to discover either some solution or the optimal solution,
some applications require finding diverse solutions for various purposes.

Hebrard et al. (2005) introduce the MaxDiversekSet problem, which is the problem
of finding the most diverse set of k solutions, and propose an exact and an incremental
algorithm for solving it. The exact algorithm does not scale to a large number of solutions
(Van Hentenryck et al., 2009; Ingmar et al., 2020). The incremental algorithm selects
solutions iteratively by solving a distance maximization problem.

Automatic Generation of Architectural Tests (ATGP) is an application of CP that
requires generating many diverse solutions. Van Hentenryck et al. (2009) model ATGP
as a MaxDiversekSet problem and solve it using the incremental algorithm of Hebrard
et al. (2005). Due to the large number of diverse solutions required (50-100), Van Hentenryck
et al. (2009) replace the maximization step with local search.

In software diversity, solution quality is of paramount importance. In general, earlier CP
approaches to diversity are concerned with satisfiability only. An exception is the approach
of Petit and Trapp (2015). This approach modifies the objective function for assessing
both solution quality and solution diversity, but does not scale to the large number of
solutions required by software diversity. Ingmar et al. (2020) propose a generic framework
for modeling diversity in CP. For tackling the quality-diversity trade-off, they propose
constraining the objective function with the optimal (or best known) cost o. DivCon applies
this approach by allowing solutions p% worse than o, where p is a user-defined parameter.

2.4 Compiler Optimization as a Combinatorial Problem

A Constraint Satisfaction Problem (CSP) is a problem specification P = 〈V,U,C〉, where
V are the problem variables, U is the domain of the variables, and C the constraints among
the variables. A Constraint Optimization Problem (COP), P = 〈V,U,C,O〉, consists of a
CSP and an objective function O. The goal of a COP is to find a solution that optimizes
O.

Compilers are programs that generate low-level assembly code, typically optimized for
speed or size, from higher-level source code. A compilation process can be modeled as
a COP by letting V be the decisions taken during the translation, C be the constraints
that the program semantics and the hardware resources impose, and O be the cost of the
generated code.

Compiler backends typically generate low-level assembly code from an Intermediate
Representation (IR), a program representation that is independent of both the source and
the target language. Figure 2 shows the high-level view of a combinatorial compiler backend.
A combinatorial compiler backend takes as input the IR of a program, generates and solves

1475



Tsoupidi, Castañeda Lozano, & Baudry

factorial.c

Compiler
Frontend

optimal

Combinatorial Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

source
code IR

optimal solution

factorial.c

Compiler
Frontend

optimal

Combinatorial Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

source
code IR

optimal solution

Figure 2: High-level view of a combinatorial compiler backend

a COP, and outputs the optimized low-level assembly code described by the solution to the
COP.

This paper assumes that programs at the IR level are represented by their Control-Flow
Graph (CFG). A CFG is a representation of the possible execution paths of a program,
where each node corresponds to a basic block and edges correspond to intra-block jumps.
A basic block is a set of abstract instructions (hereafter just instructions) with no branches
besides the end of the block. Each instruction is associated with a set of operands charac-
terizing its input and output data. Typical decision variables V of a combinatorial compiler
backend are the issue cycle ci ∈ N0 of each instruction i, the processor instruction mi ∈ N0

that implements each instruction i, and the processor register ro ∈ N0 assigned to each
operand o.

Figure 3a shows an implementation of the factorial function in C where each basic
block is highlighted. Figure 3b shows the IR of the program. The example IR contains
10 instructions in three basic blocks: bb.0, bb.1, and bb.2. Basic block bb.0 corresponds
to initializations, where $a0 holds the function argument n, and t1 corresponds to variable
f. bb.1 computes the factorial in a loop by accumulating the result in t2. bb.2 stores the
result to $v0 and returns. Some instructions in the example are interdependent, which
leads to serialization of the instruction schedule. For example, beq (6) consumes data (t3)
defined by slti (4) and hence needs to be scheduled later. Instruction dependencies limit the
amount of possible assembly code versions and may restrict diversity significantly. Finally,
Figure 3c shows the arrangement of the issue-cycle variables in the constraint model used
by the combinatorial compiler backend. Similarly, Figure 3d shows the arrangement of the
register variables.

The CFG representation of a program offers a natural decomposition of the COP into
subproblems, each consisting of a basic block. This partitioning requires first solving the
global problem that assigns registers to the program variables that are live (active) through
different basic blocks (Castañeda Lozano et al., 2012). For example, in Figure 3b, the global
problem has to assign a register to t1 because both bb.0 and bb.1 use it. Subsequently, it is
possible to solve the COP by optimizing each of the local problems (for every basic block),
independently.

DivCon aims at mitigating code-reuse attacks. Therefore, DivCon considers the order of
the instructions and the assignment of registers to their operands in the final binary, which
directly affects the feasibility of code-reuse attacks (see Figures 1a and 1b). For this reason,
the diversification model uses the issue-cycle sequence of instructions, c = {c0, c1, ..., cn},
and the register allocation, r = {r0, r1, ..., rn}, to characterize the diversity among different
solutions.

1476



Constraint-based Diversification of JOP Gadgets

int f a c t o r i a l ( int n) {

int f ;
f = 1 ;

while (n > 0) {
f ∗= n−−;

}

return f ;

}

(a) C code

0 : t1 ← $a0
1 : t2 ← 1
2 : b lez t1, bb . 2

3 : t2 ← mul t2, t1
4 : t3 ← s l t i t1, 2
5 : t1 ← addi t1, −1
6 : beq t3, %0, bb . 1
7 : b bb . 2

8 : $v0 ← t2
9 : j r $ra

bb.0

bb.1

bb.2

(b) IR

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

bb.0

bb.1

bb.2

(c) Issue cycles

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

i.0

i.1

i.2

i.3

i.4

i.5

i.6

i.8

i.9

(d) Register allo-
cation

Figure 3: Factorial function example

factorial.c

Compiler
Frontend

optimal

Comb. Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

...

source
code

optimal
solution

factorial.c

Compiler
Frontend

optimal

Comb. Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

...

source
code

optimal
solution
Figure 4: High-level view of DivCon

3. DivCon

This section introduces DivCon, a software diversification method that uses a combinatorial
compiler backend to generate program variants. Figure 4 shows a high-level view of the
diversification process. DivCon uses 1) the optimal solution (see Definition 1) to start the
search for diversification and 2) the cost of the optimal solution to restrict the variants
within a maximum gap from the optimal. Subsequently, DivCon generates a number of
solutions to the CSP that correspond to diverse program variants.

The rest of this section describes the diversification approach of DivCon. Section 3.1
formulates the diversification problem in terms of the constraint model of a combinatorial
compiler backend, Section 3.2 defines the proposed diversification algorithms, Section 3.3
defines the distance measures, and finally, Section 3.4 describes the search strategy for
generating program variants.

3.1 Problem Description

In this section, we will define the program diversification problem and stress important
concepts that we will use later in the evaluation part (Section 4). Let P = 〈V,U,C〉 be the
compiler backend CSP for the program under compilation and O the objective function of
the COP, 〈V,U,C,O〉.

1477



Tsoupidi, Castañeda Lozano, & Baudry

Definition 1 Optimal solution is the solution yopt ∈ sol(P ) that the combinatorial com-
piler backend (see Section 2.4) returns and for which O(yopt) = o.

We then define the optimality gap as follows:

Definition 2 Optimality gap is the ratio, p ∈ R≥0, that constrains the optimization
function, such that ∀s ∈ sol(P ) . O(s) ≤ (1 + p) · o.

We define the distance function (three such functions are defined in Section 3.3) as
follows:

Definition 3 Distance δ(s1, s2) is a function that measures the distance between two so-
lutions of P, s1, s2 ∈ sol(P ).

Let parameter h ∈ N be the minimum allowed pairwise distance between two generated
solutions. Our problem is to find a subset of the solutions to the CSP, S ⊆ sol(P ), such
that:

∀s1, s2 ∈ S . s1 6= s2 =⇒ δ(s1, s2) ≥ h and ∀s ∈ S .O(s) ≤ (1 + p) · o (1)

To solve the above problem, this paper proposes two LNS-based incremental algorithms
defined in Section 3.2. LNS is a metaheuristic that allows searching for solutions in large
parts of the search tree. This property makes LNS a good candidate for generating a large
number of diverse solutions. To guarantee that the new variants are sufficiently different
from each other, we define three distance measures (Section 3.3) that quantify the concept
of program difference for our application.

3.2 Diversification Algorithms

This section presents two LNS-based algorithms for the generation of a large number of
solutions for software diversification. The first algorithm (Algorithm 1), referred to as
simply LNS, solves the problem monolithically using an LNS-based approach. The second
algorithm, DLNS (Algorithm 2), decomposes the problem into subproblems and uses LNS
to diversify each of these subproblems independently and in parallel. The final solutions
are then composed by randomly combining the solutions of the subproblems.

LNS Algorithm. Algorithm 1 presents a monolithic LNS-based diversification algorithm.
It starts with the optimal solution yopt (line 3). Subsequently, the algorithm adds a distance
constraint for yopt and the optimality constraint with o = O(yopt) (line 4). While the termi-
nation condition is not fulfilled (line 5), the algorithm uses LNS as described in Section 3.4
to find the next solution y (line 6), adds the next solution to the solution set S (line 7),
and updates the distance constraints based on the latest solution (line 8). When the termi-
nation condition is satisfied, the algorithm returns the set of solutions S corresponding to
diversified assembly code variants (line 9).

In our experience, our application does not require large values of h because even small
distance between variants breaks gadgets (see Figure 1). An alternative algorithm that
may improve Algorithm 1 for larger values of h, is replacing solveLNS on line 6 and the
constraint update on line 8 with an LNS maximization step that returns a solution by
iteratively improving its pairwise distance with all current solutions in S until reaching the
value of h.

1478



Constraint-based Diversification of JOP Gadgets

Algorithm 1: Incremental algorithm for generating diverse solutions

1 function solve lns (yopt , 〈V,U,C〉)
2 begin

3 S ← {yopt } , y ← yopt ,
4 C′ ← C ∪ {δ(yopt) ≥ h , O(V ) ≤ (1 + p) · o}
5 while not term cond ( ) // e.g. |S| > k ∨ time_limit()

6 y ← solveLNS ( relax ( y ) , 〈V,U,C′〉)
7 S ← S ∪ {y}
8 C′ ← C′ ∪ {δ(y, s) ≥ h | ∀s ∈ sol(〈V,U,C′〉) }
9 return S

10 end

Decomposition Algorithm. This section presents DLNS (Algorithm 2), an LNS-based
algorithm that uses decomposition to enable diversification of large functions. To enable
this, the algorithm divides the problem into a global problem and a set of local subproblems,
one for each basic block of the function.

Algorithm 2 starts by adding the optimal solution to the set of solutions (line 3) and
continues by adding the optimality constraints (line 4). While the termination condition
is not satisfied, the algorithm solves the global problem (line 7). After finding a global
solution, the algorithm solves the local problems for each basic block b ∈ B in parallel
and generates a number of local solutions for each basic block (lines 9 and 10). Then, the
algorithm combines one randomly selected solution for each basic block (line 13). This
combined solution may be invalid (line 14) due to, for example, exceeded cost. In case the
solution is valid (line 14), the algorithm adds this solution to the set of solutions S (line
15) and, finally, adds a diversity constraint to the problem (line 16).

Algorithm 2: Decomposition-based incremental algorithm for generating diverse solutions

1 function solve decomp lns (yopt , 〈V,U,C〉)
2 begin

3 S ← {yopt } , y ← yopt ,
4 C′ ← C ∪ {δ(yopt) ≥ h , O(V ) ≤ (1 + p) · o}
5 while not term cond ( ) // e.g. |S| > k ∨ time_limit()

6 // Find partial solution

7 y ← psolveLNS ( relax ( y ) , 〈V,U,C′〉)
8 // Solve local problems

9 for b ∈ B
10 Sb ← spawn solve lns ( yb , 〈Vb, Ub, C

′
b〉)

11 // Select solutions

12 for | S1 × S2 × . . . × Sb |
13 y ← combine (∀ b ∈ B.∃ yb ∈ Sb . yb , 〈V,U,C′〉)
14 if valid ( y ) :
15 S ← S ∪ {y}
16 C′ ← C′ ∪ { δ(y, s) ≥ h | ∀s ∈ sol(〈V,U,C′〉) }
17 end

Example. Figure 5 shows two MIPS32 variants of the factorial example (Figure 3), which
correspond to two solutions of DivCon. The variants differ in two aspects: first, the beqz
instruction is issued one cycle later in Figure 5b than in Figure 5a, and second, the tem-
porary variable t3 (see Figure 3) is assigned to different MIPS32 registers ($t0 and $t1).

1479



Tsoupidi, Castañeda Lozano, & Baudry

LNS diversifies the function that consists of three basic blocks by finding different solu-
tions that assign values to the registers and the instruction schedule simultaneously. DLNS
solves first the global problem by assigning registers to the temporary variables that are
live across multiple basic blocks (t1 and t2) and then assigns the issue schedule and the rest
of the registers for each basic block, independently and possibly in parallel. The diversified
variants in Figure 5 serve presentation purposes. Figure 7 in Appendix B presents a more
elaborated example of two diversified functions.

3.3 Distance Measures

This section defines three alternative distance measures: Hamming Distance (HD), Leven-
shtein Distance (LD), and Gadget Distance (GD). HD and LD operate on the schedule
of the instructions, i.e. the order in which the instructions are issued in the CPU, whereas
GD operates on both the instruction schedule and the register allocation, i.e. the hard-
ware register for each operand. Early experimental results that we have performed have
shown that diversifying register allocation is less effective than diversifying the instruction
schedule against code-reuse attacks. However, restricting register allocation diversity to the
instructions very near a branch instruction (a key component of a JOP gadget), improves
DivCon’s gadget diversification effectiveness.

Hamming Distance (HD). HD is the Hamming distance (Hamming, 1950) between the
issue-cycle variables of two solutions. Given two solutions s, s′ ∈ sol(P ):

δHD(s, s′) =
n∑
i=0

(s(ci) 6= s′(ci)), (2)

where n is the maximum number of instructions.
Consider Figure 1b, a diversified version of the gadget in Figure 1a. The only instruction

that differs from Figure 1a is the instruction at line 1 that is issued one cycle before. The
two examples have a HD of one, which in this case is enough for breaking the functionality
of the original gadget (see Section 2.1).

Levenshtein Distance (LD). Levenshtein Distance (or edit distance) measures the min-
imum number of edits, i.e. insertions, deletions, and replacements, that are necessary for
transforming one instruction schedule to another. Compared to HD, which considers only

1 bb.0: blez $a0 , bb.2

2 addiu $v0 , $zero , 1

3 bb.1: mul $v0 , $v0 , $a0

4 slti $t0 , $a0 , 2

5 beqz $t0 , bb.1

6 addi $a0 , $a0 , -1

7 bb.2: jr $ra

8 nop

(a) Variant 1

1 bb.0: blez $a0 , bb.2

2 addiu $v0 , $zero , 1

3 bb.1: mul $v0 , $v0 , $a0

4 slti $t1 , $a0 , 2

5 nop

6 beqz $t1 , bb.1

7 addi $a0 , $a0 , -1

8 bb.2: jr $ra

9 nop

(b) Variant 2

Figure 5: Two MIPS32 variants of the factorial example in Figure 3

1480



Constraint-based Diversification of JOP Gadgets

replacements, LD also considers insertions and deletions. To understand this effect, con-
sider Figure 5. The two gadgets differ only by one nop operation but HD gives a distance
of three, whereas LD gives one, which is more accurate. LD takes ordered vectors as input,
and thus requires an ordered representation (as opposed to a detailed schedule) of the in-
structions. Therefore, LD uses vector c−1 = channel(c), a sequence of instructions ordered
by their issue cycle. Given two solutions s, s′ ∈ sol(P ):

δLD(s, s′) = levenshtein distance(s(c−1), s′(c−1)), (3)

where levenshtein distance is the WagnerFischer algorithm (Wagner & Fischer, 1974)
with time complexity O(nm), where n and m are the lengths of the two sequences.

Gadget Distance (GD). GD is an application-specific distance measure targeting JOP
gadgets that we propose in this paper. GD operates on both register allocation and instruc-
tion scheduling, focusing on the instructions preceding a branch instruction because JOP
gadgets terminate with a branch instruction. In this way, GD enforces the program variants
to differ with regards to the gadgets. Here, the set of branch instructions, B, consists of
all indirect jump or call instructions (e.g. line 7 in Figure 5a). A gadget may also use a
direct jump (e.g. line 5 in Figure 5a). However, the majority of gadgets require control over
the jump target, which is not possible with direct jumps. GD uses two configuration pa-
rameters, nc and nr. Parameter nc denotes the number of instructions before each branch,
br ∈ B, that the issue cycle of two variants may differ. Similarly, parameter nr denotes the
number of instructions preceding a branch of two variants that the register assignment of
the instruction operands may differ. Consider Figure 1b. The two gadgets differ by one nop

instruction and a different register at instruction 4. Then, the GD distance is two, given
nc = 3 and nr = 0.

Given two solutions s, s′ ∈ sol(P ), the partial distance δnr,nc

PGD on branch br ∈ B is :

δnr,nc

PGD (s, s′, br) =

Ni∑
i=0

f(s, nc, i, br)(s(ci) 6= s′(ci)) +
∑

p∈ps(ci)

f(s, nr, i, br)(s(rp) 6= s′(rp))

 ,

(4)

where Ni is the number of instructions, ps(ci) is the set of operands in instruction i, and
f(s, n, i, br) is a function that takes four inputs, i) one solution s ∈ S, ii) a natural number
that corresponds to the allowed distance of an instruction i from a branch instruction br,
iii) instruction i, and iv) branch instruction br. The definition of f is as follows:

f(s, n, i, br) =

{
1, s(cbr)− s(ci) ∈ [0, n]

0, otherwise
. (5)

Finally, given two solutions s, s′ ∈ sol(P ), the Gadget Distance δnr,nc

GD is defined as:

δnr,nc

GD (s, s′) =
∑
br∈B

(
δnr,nc

PGD (s, s′, br)
)
. (6)

Note that in Algorithm 1 and Algorithm 2, GD will result in a number of constraints
equal to the number of branches in B plus one.

1481



Tsoupidi, Castañeda Lozano, & Baudry

Table 1: Original and Random branching strategies

(a) Original branching strategy

Variable
Var.

Selection
Value Selection

ci in order min. val first
mi in order min. val first
ro in order randomly

(b) Random branching strategy

Variable
Var.

Selection
Value Selection

ci randomly randomly
mi randomly randomly
ro randomly randomly

3.4 Search

Unlike previous CP approaches to diversity, DivCon employs Large Neighborhood Search
(LNS) (Shaw, 1998) for diversification. LNS is a metaheuristic that defines a neighborhood,
in which search looks for better solutions, or in our case, different solutions. The definition
of the neighborhood is through a destroy and a repair function. The destroy function
unassigns a subset of the variables in a given solution and the repair function finds a new
solution by assigning new values to the destroyed variables.

In DivCon, the algorithm starts with the optimal solution (Definition 1) of the combi-
natorial compiler backend. Subsequently, it destroys a part of the variables and continues
with the model’s branching strategy to find the next solution, applying a restart after a
given number of failures. LNS uses the concept of neighborhood, i.e. the variables that LNS
may destroy at every restart. To improve diversity, the neighborhood for DivCon consists of
all decision variables, i.e. the issue cycles c, the instruction implementations m, and the reg-
isters r. Furthermore, LNS depends on a branching strategy to guide the repair search. To
improve security and allow LNS to select diverse paths after every restart, DivCon employs
a random variable-value selection branching strategy as described in Table 1b.

4. Evaluation

This section evaluates DivCon experimentally. For simplicity, the section uses the acronyms
LNS and DLNS to refer to the specific application of Algorithms 1 and 2 in DivCon. The
diversification effectiveness and the scalability of DivCon depend on three main dimensions:

• Optimality gap (see Definition 2), which relaxes the optimization function. Here,
we evaluate the diversification effectiveness and scalability for four different values of
p, 0%, 5%, 10%, and 20%
• Diversification algorithm. We compare our two proposed algorithms, LNS (Al-

gorithm 1) and DLNS (Algorithm 2) with Random Search (RS) and incremental
MaxDiversekSet (Hebrard et al., 2005). RS uses the branching strategy of Ta-
ble 1b. For MaxDiversekSet, the first solution corresponds to the optimal solution
(see Definition 1) and the maximization step uses the branching strategy of Table 1a.
• Distance measure. We compare four distance measures (Section 3.3), HD, δHD, LD,
δLD, and two configurations of GD for different values of parameters nr and nc (see
Section 3.3), δ0,2

LD and δ0,8
LD. The two parameters control the number of instructions

preceding a branch that differ among different solutions. The smaller these parameters

1482



Constraint-based Diversification of JOP Gadgets

are, the higher the chance of breaking a larger number of JOP gadgets, given that all
gadgets end with a branch instruction.

The output of DivCon is a set of diverse binary variants. To evaluate the diversification
effectiveness of each approach, we compare the generated binaries using the following three
measures:

• Code diversity, which measures the pairwise distance of the final binaries using the
same distance that was used for diversification. The definition is in Equation 7.
• Gadget diversity, which measures the rate of gadgets that DivCon diversifies suc-

cessfully (see Section 4.4).
• Scalability, which is related to the number of variants generated within a fixed time

budget or the total time required to generate the maximum number of variants.

The six research questions (RQs) below investigate the influence of the optimality gap,
diversification algorithm, distance measure, and program scope with respect to our
three diversity measures.

• RQ1. How effective are our two novel diversification algorithms? Here, we compare
LNS and DLNS with state-of-the-art diversification algorithm, with respect to their
ability to generate binary code that is as diverse as possible. To address this ques-
tion, we evaluate the code diversity of DivCon for the different diversification
algorithms.
• RQ2. What is the scalability of the distance measures when generating multiple

program variants? Here, we evaluate which of the distance measures is the most
appropriate for software diversification. To address this question, we evaluate the
scalability of DivCon for the different distance measures.
• RQ3. How effective is DivCon using LNS and DLNS at mitigating JOP attacks? In

this part, we evaluate which method is the most effective against JOP attacks by
comparing the rate of shared gadgets among the generated solutions. To address this
question, we evaluate the gadget diversity of DivCon for the different diversifica-
tion algorithms.
• RQ4. How effective is DivCon using different distance measures against JOP attacks?

Here, we evaluate the effectiveness of DivCon using four different distance measures
against JOP attacks. To address this question, we evaluate the gadget diversity of
DivCon for the different distance measures.
• RQ5. How does code quality affect the effectiveness of LNS against JOP attacks using

an application-specific distance measure? Here, we evaluate the effect of code quality
on the effectiveness of DivCon at mitigating JOP attacks. To address this question,
we evaluate the gadget diversity of DivCon for the different optimality gaps.
• RQ6. What is the effect of function diversification with DivCon at the application

level? Here, we evaluate the effect of diversification using DivCon with a voice com-
pression case study. To address this question, we evaluate the gadget diversity of
DivCon in a compiled whole-program binary consisting of multiple functions.

4.1 Experimental Setup

The following paragraphs describe the experimental setup for the evaluation of DivCon.

1483



Tsoupidi, Castañeda Lozano, & Baudry

Implementation. DivCon is implemented as an extension of Unison (Castañeda Lozano,
Carlsson, Blindell, & Schulte, 2019), and is available online2. Unison implements two back-
end transformations: instruction scheduling and register allocation. As part of register
allocation, Unison captures many interdependent transformations such as spilling, register
assignment, coalescing, load-store optimization, register packing, live range splitting, re-
materialization, and multi-allocation (Castañeda Lozano et al., 2019). Unison models two
objective functions for code quality, speed and code size. This evaluation uses the speed
objective function, which considers statically derived basic-block frequencies and the exe-
cution time of each basic block that depends on the shared resources, the instruction issue
cycles, and the instruction latencies. These execution times and latencies were based on a
generic MIPS32 model of LLVM (Castañeda Lozano et al., 2019). DivCon relies on Unison’s
solver portfolio that includes Gecode v6.2 (Gecode Team, 2020) and Chuffed v0.10.3 (Chu,
2011) to find optimal binary programs. We use Gecode v6.2 for automatic diversification
because Gecode provides an interface for customizing search. The LLVM compiler (Lattner
& Adve, 2004) is used as a front-end and IR-level optimizer, as well as for the final emission
of assembly code. DivCon operates on the Machine Intermediate Representation (MIR)3

level of LLVM.

Benchmark functions and platform. We evaluate the ability of DivCon to generate
program variants with 20 functions sampled randomly from MediaBench4 (Lee et al., 1997).
This benchmark suite is widely employed in embedded systems research. We select two sets
of benchmarks. The first set consists of 14 functions ranging from 10 to 100 MIR instructions
with a median of 58 instructions. The second set consists of six functions ranging between
100 and 1000 lines of MIR instructions. Functions with size below 100 MIR instructions
compose the 65% of the functions in MediaBench, whereas functions with size less than
500 MIR instruction compose the 93%, and those with size less than 1000 MIR instructions
compose the 97% of the functions in MediaBench.

Smaller functions in the first set allow the evaluation of all algorithms and distance
measures regardless of their computational cost, whereas larger functions challenge our
diversification algorithms. Table 2 lists the ID, application, function name, the number of
basic blocks, and the number of MIR instructions of each sampled function. For evaluating
the scalability of DivCon, we perform an additional experiment consisting of the second set
of functions. Table 3 describes these additional benchmarks. The evaluation for scalability
of these benchmarks for all the random seeds takes more than one week due to memory
limitations that force sequential execution. Therefore, we use these benchmarks only for
evaluating the scalability of DivCon.

Furthermore, for evaluating the effectiveness of our approach at the application level,
we perform a case study of one of application from MediaBench, G.721. This application
consists of functions that we present in Table 11.

The functions are compiled to MIPS32 assembly code, a popular architecture within
embedded systems and the security-critical Internet of Things (Alaba et al., 2017).

2. https://github.com/romits800/divcon

3. Machine Intermediate Representation: https://www.llvm.org/docs/MIRLangRef.html

4. A later version of MediaBench, MediabBench II was not complete by the time we are writing this paper.

1484

https://github.com/romits800/divcon
https://www.llvm.org/docs/MIRLangRef.html


Constraint-based Diversification of JOP Gadgets

Table 2: Benchmarks functions - 10 to 100 MIR instructions

ID application function name # blocks # instructions

b1 rasta FR2TR 4 19
b2 mesa glColor3ubv 1 20
b3 mesa glTexCoord1dv 1 21
b4 g721 ulaw2alaw 4 22
b5 jpeg start pass main 5 26
b6 mesa glTexCoord4sv 1 27
b7 mesa glEvalCoord2d 5 47
b8 mesa glTexGendv 5 58
b9 rasta open out 8 58
b10 jpeg quantize3 ord dither 7 71
b11 mpeg2 pbm getint 12 86
b12 mesa gl save PolygonMode 11 89
b13 ghostscript gx concretize DeviceCMYK 13 93
b14 mesa gl save MapGrid1f 11 96

Host platform. All experiments run on an Intel R©CoreTMi9-9920X processor at 3.50GHz
with 64GB of RAM running Debian GNU/Linux 10 (buster). Each experiment runs for 15
random seeds. The aggregated results of the evaluation (RQ1) show the mean value and the
standard deviation for the maximum number of generated variants, where at least five seeds
are able to terminate within a time limit. For the smaller benchmarks (Table 2), we have
10GB of virtual memory for each of the executions. The experiments for different random
seeds run in parallel (five seeds at a time), with two unique cores available for every seed
for overheating reasons. To take advantage of the decomposition scheme, DLNS experi-
ments use eight threads (four physical cores) with three experiments (three seeds at a time)
running in parallel. The rest of the algorithms run as sequential programs. For the larger
benchmarks (Table 3), the available virtual memory for each of the executions is 64GB.
The experiments for different random seeds run sequentially and the DLNS experiments
use eight threads.

Algorithm Configuration. The experiments focus on speed optimization and aim to
generate 200 variants within a timeout. Parameter h in Algorithms 1 and 2 is set to one
because even small distance between variants is able to break gadgets (see Figure 1). LNS
uses restart-based search with a limit of 1000 failures and a relax rate of 60%. The relax
rate is the probability that LNS destroys a variable at every restart, which affects the
distance between two subsequent solutions. The relax rate is selected empirically based on
preliminary experiments (Appendix A). Note that in our previous paper (Tsoupidi et al.,
2020), the best relax rate on a different benchmark set was found to be 70%. This suggests
that the optimal relax rate depends on the properties of the program under compilation,
where the number of instructions appears to be a significant factor. DLNS uses the same
parameters as LNS for the local problems, which consist of the individual basic blocks, and
a different relax rate for the global problem (50% for b1 to b14 and 10% for the larger
benchmarks).

1485



Tsoupidi, Castañeda Lozano, & Baudry

Table 3: Benchmarks functions - 100 to 1000 MIR instructions

ID application function name #blocks #instructions

b15 mesa gl xform normals 3fv 10 107
b16 jpeg start pass 1 quant 34 215
b17 mesa apply stencil op to span 65 267
b18 mesa antialiased rgba points 39 366
b19 mesa gl depth test span generic 102 403
b20 mesa general textured triangle 40 890

4.2 RQ1. Scalability and Diversification Effectiveness of LNS and DLNS

This section evaluates the diversification effectiveness and scalability of LNS and DLNS
compared to incremental MaxDiversekSet and RS. Here, effectiveness is the ability
to maximize the difference between the different variants generated by a given algorithm.
Scalability is related to the number of variants generated within a fixed time budget and
the total time required to generate the maximum number of variants. This experiment uses
HD as the distance measure because HD is a general-purpose distance that may be valuable
for different applications.

We measure the diversification effectiveness of these methods based on the relative
pairwise distance of the solutions. Given a set of solutions S and a distance measure δ, the
pairwise distance d of the variants in S is:

d(δ, S) =

|S|∑
i=0

|S|∑
j>i

δ(si, sj) /

(
|S|
2

)
. (7)

The larger this distance, the more diverse the solutions are, and thus, diversification
is more effective. Tables 4 and 5 shows the pairwise distance d and diversification time t
(in seconds) for each benchmark and method. Each experiment uses a time budget of 20
minutes and an optimality gap of p = 10%. The best values of d (larger) and t (lower) are
marked in bold for the completed experiments. Multiple values may be marked in bold
when these values do not differ significanlty. Incomplete experiments are highlighted in
italic and their number of variants in parenthesis. A complete experiment is an experiment,
where the algorithm was able to generate the maximum number of 200 variants within the
time limit for at least five of the random seeds. The values of d and t correspond to the
results for these random seeds.

Scalability. The scalability results (t) show that only DLNS is scalable to large bench-
marks, i.e. it is able to generate the maximum of 200 variants for all benchmarks except for
b20. Benchmark b20 contains a large number of MIR instructions and a small number of
basic blocks (see Table 3) and thus, exceeds Unison’s solving capability (Castañeda Lozano
et al., 2019). RS and LNS are scalable for the majority of the benchmarks between 10 and
100 lines of MIR instructions (Table 4). In both benchmark sets, MaxDiversekSet scales
poorly, it cannot generate 200 variants for any benchmark. MaxDiversekSet is able to
find a small number of variants for b1 -b6. However, it is not able to find any variant for
the rest of the benchmarks. The first six benchmarks are small functions with less that 30

1486



Constraint-based Diversification of JOP Gadgets

ID
MaxDiversekSet RS LNS (0.6) DLNS (0.6)

d t(s) d t(s) d t(s) d t(s)
b1 36.4±7.7 - (2) 4.1±0.3 0.1±0.0 26.6±6.6 2.4±0.9 12.0±1.6 9.4±5.8
b2 18.7±0.2 - (4) 5.7±0.1 0.2±0.0 13.2±0.6 1.7±0.3 9.7±1.1 9.4±2.0
b3 19.3±1.2 - (3) 5.1±0.1 0.2±0.0 14.8±1.1 1.4±0.3 9.8±1.9 5.8±1.2
b4 22.4±0.0 - (27) 5.3±0.0 0.2±0.0 15.4±1.4 1.1±0.2 11.8±1.9 11.7±9.2
b5 35.0±0.7 - (2) 5.3±0.0 0.2±0.0 22.8±2.3 2.9±0.3 13.1±1.6 5.7±0.8
b6 28.0±0.0 - (2) 4.5±0.0 0.4±0.0 23.5±0.8 13.8±2.2 22.0±1.0 51.6±12.2
b7 - - 4.9±0.1 0.4±0.0 45.2±2.4 7.3±1.1 19.9±5.0 4.3±0.8
b8 - - 4.3±0.1 0.5±0.0 57.4±3.0 11.1±1.4 25.6±5.6 4.6±0.7
b9 - - 3.0±0.0 0.7±0.0 64.0±7.2 15.6±5.2 28.1±6.7 6.1±2.1
b10 - - 1.0±0.0 - (3) 160.9±16.0 332.1±88.8 30.4±14.3 7.6±0.9
b11 - - 1.9±0.0 7.6±0.1 155.9±4.4 110.0±27.1 48.9±13.6 7.7±1.3
b12 - - 1.7±0.0 4.5±0.7 127.4±3.7 361.3±77.3 32.2±15.1 6.0±0.4
b13 - - 1.9±0.0 3.0±0.0 103.7±5.4 94.6±39.7 46.7±9.8 15.5±21.9
b14 - - 1.2±0.1 6.0±0.1 139.3±2.9 865.4±99.4 39.3±20.1 7.0±0.5

Table 4: Distance and Scalability of LNS and DLNS against RS and MaxDiversekSet -
10 to 100 MIR instructions

ID
MaxDiversekSet RS LNS (0.6) DLNS (0.6)

d t(s) d t(s) d t(s) d t(s)

b15 - - 1.0±0.0 - (7) 278.5±4.2 - (159) 30.6±25.5 103.3±51.2
b16 - - - - - - 73.1±41.0 57.3±14.7
b17 - - 2.7±0.2 318.8±0.2 375.4±13.4 - (27) 147.9±37.1 92.0±33.7
b18 - - - - - - 167.5±169.8 287.2±4.0
b19 - - 1.0±0.0 2902.8±1.6 - - 222.8±48.6 139.3±22.8
b20 Unison and DivCon cannot handle this function.

Table 5: Distance and Scalability of LNS and DLNS against RS and MaxDiversekSet -
100 to 1000 MIR instructions

MIR instructions, whereas the rest of the benchmarks are larger and consist or more than
47 instructions (see Table 2).

LNS is slower than RS and DLNS, requiring up to 855 seconds or approximately 14.25
minutes for diversifying b14. Similar to MaxDiversekSet, the number of instructions ap-
pears to be the main factor that determines the scalability of LNS. For the large benchmarks
of Table 4, b10 -b12, and b14, the diversification time is larger than one minute, whereas
for smaller benchmarks b1 -b9, which have less than 60 MIR instructions, the diversification
time is less than one minute. For the largest benchmarks (Table 5), LNS is able to generate
159 variants for b15 in around 4.63 minutes, but is not able to scale for larger benchmarks.

DLNS is generally slower than RS for the benchmarks of Table 4, but is able to scale to
larger benchmarks, as seen in Table 5, where RS manages to generate 200 variants only for
b17 and b19. We can see that DLNS has similar performance regardless of the benchmark
size, with a general increase in the diversification time for larger benchmarks (Table 5). This
increase depends on the number of threads (eight) that is smaller than the number of basic
blocks. For small benchmarks with basic blocks that contain few instructions, decomposition
is not advantageous because it does not reduce the search space significantly. Instead, DLNS

1487



Tsoupidi, Castañeda Lozano, & Baudry

introduces an overhead when some versions of the local solutions cannot be combined into
a solution. Among the commonly scalable benchmarks, the advantage of DLNS compared
to RS is clear in medium and large benchmarks, b10 -b14, b17, and b19, where DLNS is
able generate a large number of variants. At the same time, DLNS demonstrates a large
variation in the solutions with the different seeds. This is due to the decomposition scheme
of Algorithm 2. That is, depending on the random seed, the algorithm might need to restart
the global problem just once or multiple times.

Overall, for small benchmarks, i.e. less than 60 MIR instructions, RS, LNS, and DLNS
are all able to generate program variants efficiently (less than 16 seconds), whereas for larger
benchmarks, only DLNS is able to generate a large number of variants efficiently.

Diversity. The diversity results (d) show that LNS is more effective at diversifying than
RS and DLNS. The improvement of LNS over RS ranges from 1.3x (for b2 ) to 115x (for
b14 ), whereas the improvement of LNS over DLNS is smaller and ranges from 7% (for b6 )
to 429% or 4x (for b10 ). DLNS is clearly less effective at generating highly diverse variants
than LNS, but more effective than RS. In particular, the improvement of DLNS over RS
ranges from 70% (for b1 ) to 222x (for b19 ). The difference between LNS and DLNS in
generating diverse solutions is due to the ability of the former to consider the problem as a
whole, enabling more fine-grained solutions.

MaxDiversekSet is not able to generate 200 variants for any of the benchmarks but
may give an indication of an upper bound for diversification of the smaller benchmarks.
That is, although MaxDiversekSet is not exact, i.e. it maximizes the pairwise distance
iteratively, we expect that LNS, DLNS, and RS are not able to achieve higher pairwise
diversity than MaxDiversekSet. However, a direct comparison is not possible because
MaxDiversekSet is not able to generate 200 variants for any of the benchmarks.

Conclusion. In summary, LNS and DLNS provide two attractive solutions for diversifying
code: LNS is significantly and consistently more effective at diversifying code than both
RS and DLNS, but does not scale efficiently for large benchmarks, whereas DLNS is more
effective than both LNS and RS at generating variants for large problems, and is still able
to improve significantly the diversity over RS.

4.3 RQ2. Scalability of LNS with Different Distance Measures

In this section, we compare the distance measures introduced in Section 3.3 with regards to
their ability to steer the search towards diverse program variants within a maximum time
budget. Based on the results of RQ1, we focus on the LNS search algorithm, and run it
with each distance metric. For the problem-specific distance measure, GD, we compare two
configurations, i) nr = 0 and nc = 2 and ii) nr = 0 and nc = 8. The two parameters control
the number of instructions preceding a branch that differ among different solutions. The
smaller these parameters are, the higher the chance of breaking a larger number of gadgets,
given that all gadgets end with a branch instruction.

Table 6 presents the results of the distance evaluation, where the time limit is 10 minutes
and the optimality gap p = 10%. For each distance measure (δHD, δLD, δ0,2

GD, and δ0,8
GD),

the table shows the diversification time t, in seconds (or “-” if the algorithm is not able to
generate 200 variants) and the number of generated variants num within the time limit.

1488



Constraint-based Diversification of JOP Gadgets

Table 6: Scalability of δHD, δLD, δ0,2
GD, and δ0,8

GD

ID
δHD δLD δ0,2GD δ0,8GD

t(s) num t(s) num t(s) num t(s) num
b1 2.7±0.9 200 - 37 6.9±7.1 200 2.9±1.0 200
b2 1.8±0.4 200 - 41 - 75 5.8±2.6 200
b3 1.6±0.2 200 - 44 - 121 4.5±3.4 200
b4 1.3±0.2 200 - 38 2.5±0.9 200 1.4±0.4 200
b5 3.6±0.3 200 - 27 - 12 112.4±126.8 200
b6 14.1±2.3 200 - 15 172.1±179.4 200 17.6±3.3 200
b7 7.9±1.3 200 - 12 181.5±183.4 200 19.6±4.0 200
b8 12.1±1.5 200 - 8 73.1±22.2 200 32.1±6.6 200
b9 17.0±4.6 200 - 5 - 56 217.5±158.6 200
b10 348.6±90.7 200 - - 359.8±59.4 200 319.3±81.8 200
b11 121.1±29.0 200 - - - 77 445.1±64.6 200
b12 377.9±76.7 200 - - - 105 - 60
b13 107.6±44.1 200 - - 377.7±158.4 200 208.7±110.6 200
b14 - 152 - - - 55 - 36

The value of num is the maximum number of variants that at least five (out of 15) of the
random seeds generate.

The results show that when DivCon uses LNS with Hamming Distance, δHD, it gen-
erates 200 variants for all benchmarks except b12, where it generates 157 variants. The
diversification time with δHD ranges from one second for b4 to approximately six minutes
for b12. On the other hand, DivCon using Levenshtein Distance (LD), δLD, is not able to
generate 200 variants for any of the benchmarks within the time limit. The scalability issues
of δLD are due to the quadratic complexity of its implementation (Wagner & Fischer, 1974),
whereas Hamming Distance can be implemented linearly. DivCon using the first configura-
tion of Gadget Distance (GD), δ0,2

GD, generates the maximum number of variants for seven

benchmarks, i.e. b1,b4, b6 -b8, b10, and b13. Distance δ0,2
GD uses small values for parameters

nr = 0 and nc = 2, which leads to a reduced number of solutions (see Section 3.3). This
has a negative effect on the scalability, resulting in low variant generation for the rest of
the benchmarks. Using the second configuration of GD, distance δ0,8

GD, with nr = 0 and
nc = 8, DivCon generates the maximum number of variants for all benchmarks except b12
and b14. The time to generate the variants with δ0,8

GD is larger than with δHD. With this
gadget-targeting metric, DivCon takes up to seven minutes for generating 200 variants for
b11.

Conclusion. DivCon using LNS and the δ0,8
GD or δHD distance can generate a large number

of diverse program variants for most of the benchmark functions. Scalability, given the
maximum number of variants, comes with slightly longer diversification time for δ0,8

GD than
with δHD. In Section 4.5, we evaluate the distance measures with regards to security.

1489



Tsoupidi, Castañeda Lozano, & Baudry

4.4 RQ3. JOP Attacks Mitigation: Effectiveness of LNS and DLNS

Software Diversity has various applications in security, including mitigating code-reuse at-
tacks. To measure the level of mitigation that DivCon achieves, we assess the JOP gadget
survival rate srate(si, sj) between two variants si, sj ∈ S, where S is the set of generated
variants. This metric determines how many of the gadgets of variant si appear at the same
position on the other variant sj , that is srate(si, sj) = |gad(si)− gad(sj)| / |gad(si)|, where
gad(si) are the gadgets in solution si. The procedure for computing srate(si, sj) is as fol-
lows: 1) find the set of gadgets gad(si) in solution si, and 2) for every g ∈ gad(si), check
whether there exists a gadget identical to g at the same address of sj . For step 1, we use the
state-of-the-art tool, ROPgadget (Salwan, 2020), to automatically find the gadgets in the
.text section of the compiled code. For step 2, the comparison is syntactic after removing
all nop instructions. Syntactic comparison is scalable but may result in false negatives.

This and the following sections evaluate the effectiveness of DivCon against code-reuse
attacks. To achieve this, all experiments compare the distribution of srate for all pairs
of generated solutions. Due to its skewness, the distribution of srate is represented as a
histogram with four buckets (0%, (0%, 10%], (10%,40%], and (40%, 100%]) rather than
summarized using common statistical measures. Here, the best is an srate(si, sj) of 0%,
which means that sj does not contain any gadgets that exist in si, whereas an srate(si, sj)
in range (40%,100%] means that sj shares more than 40% of the gadgets of si.

To evaluate the gadget diversification efficiency, we compare the srate for all permuta-
tions of pairs in S for LNS and DLNS with RS as a baseline. Low srate corresponds to
higher mitigation effectiveness because code-reuse attacks based on gadgets in one variant
have lower chances of locating the same gadgets in the other variants (see Figure 1). Ta-
bles 7 and 8 summarize the gadget survival distribution for all benchmarks for algorithms
RS, LNS, and DLNS. We use 10% as the optimality gap and HD because, as we saw in
RQ2, DivCon using HD is the most scalable diversification configuration. The values in
bold correspond to the most frequent value(s) of the histogram. The time limit for this
experiment is 20 minutes. Column num shows the average of the generated number of
variants for all random seeds.

First, we notice that for the smaller benchmarks, b2 to b3, and b6, all algorithms are able
to generate variant pairs that share no gadgets, i.e. the most frequent values are in the first
bucket (column =0 ). RS generates diverse variants that share a small number of gadgets
for b2-b4, b6, and b10 (only three variants). For the other benchmarks, the most common
values are in the second (b11 ), or the third (b5, b7 -b9, b12 -b14, b17, and b19 ) bucket,
which provides poor mitigation effectiveness against JOP attacks. The poor effectiveness
of RS against code-reuse attacks can be correlated with the poor diversity effectiveness of
the method (see Section 4.2).

LNS generates diverse variants that do not share any gadgets (belong to the first bucket)
for all benchmarks except b5. Benchmark b5 has different behavior because it has a highly
constrained register allocation due to specific constraints imposed by the calling conventions.

Finally, DLNS has similar performance to RS for medium size benchmarks (Table 7),
but worse performance for large benchmarks (Table 8). In particular, only five benchmarks
b1 -b4 and b6 are mostly in the first bucket. Although DLNS has relatively high pairwise
distance (see Table 4), its effectiveness against code-reuse attacks is low. This is because

1490



Constraint-based Diversification of JOP Gadgets

Table 7: Gadget survival rate for 10% optimality gap with Hamming distance for RS, LNS,
and DLNS - 10 to 100 MIR instructions

ID
RS LNS DLNS

=0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num

b1 34 13 19 33 200 85 12 2 - 200 50 24 25 1 200
b2 86 7 5 1 200 88 1 11 1 200 83 1 11 5 200
b3 84 11 5 - 200 90 3 6 - 200 88 4 7 1 200
b4 92 7 1 - 200 95 4 1 - 200 52 38 8 3 200
b5 2 5 48 45 200 14 14 51 21 200 - 13 44 43 200
b6 74 18 8 - 200 92 3 5 - 200 92 3 4 1 200
b7 - 26 72 2 200 87 11 2 - 200 7 23 52 18 200
b8 - 36 63 1 200 88 10 2 - 200 7 22 48 23 200
b9 - 10 83 8 200 57 24 18 1 200 3 11 49 36 200
b10 68 2 11 19 3 98 - 1 1 200 22 1 6 71 200
b11 - 72 28 - 200 73 23 3 - 200 4 5 41 51 200
b12 - - 99 1 200 80 18 2 - 200 1 8 59 32 187
b13 26 9 35 30 200 92 4 3 - 200 31 11 19 39 149
b14 - - 98 2 200 77 21 2 - 200 - 3 61 36 179

Table 8: Gadget survival rate for 10% optimality gap with Hamming distance for RS, LNS,
and DLNS - 100 to 1000 MIR instructions

ID
RS LNS DLNS

=0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num

b15 98 - 2 - 7 99 1 - - 118 43 2 7 47 188
b16 - - - - - 98 2 - - 71 - 1 33 66 200
b17 30 13 47 10 200 87 6 6 1 42 15 10 35 40 173
b18 - - - - - - - - - - - - 2 98 187
b19 18 27 52 3 200 - - - - - 1 - 40 60 200
b20 Unison and DivCon cannot handle this function.

in many small programs with a large number of basic blocks, the number of registers that
are shared among different basic blocks (and thus assigned by the global problem, see
Algorithm 2) is high, resulting in low diversity of the register allocation among variants.

Conclusion. The LNS diversification algorithm is significantly more effective than both
DLNS and RS at generating binary variants that share a minimal number of JOP gadgets.

4.5 RQ4. JOP Attacks Mitigation: Effectiveness of Different Distance
Measures

Section 4.3 shows that Hamming Distance (HD), δHD, is the most scalable distance measure
followed closely by the second configuration of Gadget Distance (GD), δ0,8

GD. This section
investigates the impact of the distance measure on the effectiveness of DivCon against JOP
attacks.

Table 9 shows the gadget-replacement effectiveness of DivCon using distances: δHD,
δLD, δ0,2

GD, and δ0,8
GD. The time limit for this experiment is ten minutes and the optimality

1491



Tsoupidi, Castañeda Lozano, & Baudry

gap is 10%. This experiment uses LNS as the diversification algorithm because, as we have
seen in Section 4.4, LNS is more effective against JOP attacks than DLNS.

The results for the Hamming Distance (HD), δHD, are in the first column of the table.
For all benchmarks, except b5, the highest values are under the first subcolumn. This
means that a large proportion of the variant pairs do not share any gadgets, which is a
strong indication of JOP attack mitigation. In particular, the most frequent values range
from 57 to 98 percent. Benchmark b5 has weak diversification capability due to hard
constraints in register allocation (see Section 4.4).

The results for Levenshtein Distance, δLD, appear in the second column of the table.
Similar to HD, almost all benchmarks, where DivCon generates at least two variants, have
their most common value in the first subcolumn except for b5. These values range from 51%
to 85%, which corresponds to poorer gadget diversification effectiveness than using δHD.
As discussed in Section 4.3, DivCon using Levenshtein Distance is not able to generate the
maximum requested number of variants (200) within the time limit of ten minutes for any
of the benchmarks.

The third column of Table 9 shows the results for Gadget Distance (GD) with parameters
nr = 0 and nc = 2. Parameter nr = 0 enforces diversity of the register allocation for the
instructions that are issued on the same cycle as the branch instruction. Similarly, parameter
nc = 2 enforces diversity for the instruction schedule of the instructions preceding the branch
instruction by at most two cycles. Distance δ0,2

GD measures the sum of these two constraints
(and enforces it to be greater than h = 1) for all branch instructions of the benchmark
in question. DivCon with this distance measure has very high effectiveness against JOP
attacks, with the most frequent values ranging from 65 to 100 percent. However, using δ0,2

GD,
DivCon is not able to generate a large number of variants for almost half of the benchmarks.

The last distance measure, δ0,8
GD, differs from δ0,2

GD in that it allows diversifying the
instruction schedule for a larger number of instructions preceding the branch instruction,
i.e. nc = 8. Here, the most common values range from 48 to 99 percent for different
benchmarks and the scalability is satisfiable with DivCon being able to generate the total
number of requested variants for almost all the benchmarks. Using δ0,8

GD, DivCon improves
the gadget diversification efficiency of the overall fastest distance measure, δHD, for all
benchmarks except b3, where the difference is very small. The largest improvement is for
b9 and b5. For b9 the most frequent value is 57% with δHD and gets improved to 66% with
δ0,8
GD. For b5 the majority of the variant pairs are under the third bucket, which corresponds

to the weak (10% − 40%]-survival rate with δHD and under the first bucket (column =0 )
with δ0,8

GD, which is a significant improvement.

Conclusion. Distances δHD and δ0,8
GD are both appropriate distances for our application,

trading scalability with security effectiveness. DivCon using δHD has better scalability than
using δ0,8

GD (see Section 4.3), whereas DivCon using δ0,8
GD is more effective against code-reuse

attacks compared to using δHD.

4.6 RQ5. JOP Attacks Mitigation: Effectiveness for Different Optimality Gaps

This section investigates the trade-off between code quality and diversity and evaluates the
effectiveness of DivCon against code-reuse attacks. Table 10 summarizes the gadget survival
distribution for all benchmarks and different values of the optimality gap (0%, 5%, 10%,

1492



Constraint-based Diversification of JOP Gadgets

Table 9: Gadget survival rate for 10% optimality gap for the distances: δHD, δLD, δ0,2
GD,

and δ0,8
GD

ID
δHD δLD δ0,2GD δ0,8GD

=0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num

b1 85 12 2 - 200 52 30 10 8 29 99 1 - - 200 92 7 1 - 200
b2 88 1 11 1 200 85 - 12 2 37 94 4 2 - 67 90 4 6 - 200
b3 90 3 6 - 200 85 5 9 1 41 95 4 1 - 111 89 6 5 - 200
b4 95 4 1 - 200 85 12 2 1 36 99 1 - - 200 97 3 - - 200
b5 14 14 51 21 200 15 10 32 42 25 65 9 24 2 12 48 28 20 3 178
b6 92 3 5 - 200 84 4 10 2 14 96 3 1 - 187 92 4 4 - 200
b7 87 11 2 - 200 54 28 16 2 10 83 15 2 - 145 87 12 1 - 200
b8 88 10 2 - 200 53 23 20 4 7 87 12 1 - 188 88 11 1 - 200
b9 57 24 18 1 200 51 11 21 17 4 74 15 11 - 52 66 24 10 - 167
b10 98 - 1 1 200 - - - - - 99 - - - 200 99 - 1 1 200
b11 73 23 3 - 200 - - - - - 91 8 1 - 62 79 20 2 - 198
b12 80 18 2 - 200 - - - - - 96 4 - - 83 87 12 1 - 48
b13 92 4 3 - 200 - - - - - 100 - - - 185 97 1 2 - 200
b14 77 21 2 - 141 - - - - - 95 5 - - 44 85 14 1 - 31

and 20%). Based on the results of RQ3, we select LNS for this evaluation because we have
observed that DivCon using LNS is the most effective at diversifying gadgets. Similarly, in
RQ4, we were able to identify that the gadget-specific distance, δ0,8

GD, is the most effective
among the two scalable distance measures at diversifying gadgets. The values in bold
correspond to the mode(s) of the histogram and the time limit for this experiment is ten
minutes.

First, we notice that DivCon with LNS and δ0,8
GD can generate some pairs of variants

that share no gadgets, even without relaxing the constraint of optimality (p = 0%). In
particular, for p = 0%, all benchmarks except b7 are dominated by a 0% survival rate
and only b7 is dominated by a weak (0%− 10%]-survival rate. This indicates that optimal
code naturally includes software diversity that is good for security. For example, DivCon
generates on average 110 solutions for benchmark b6. Comparing pairwise the gadgets for
these solutions, we are able to determine that 91 percent of the solution pairs do not share
any gadgets, whereas five percent of these pairs share up to 10% of the gadgets and four
percent share between 10% and 40% of the gadgets. Furthermore, we can see that for only
two of the benchmarks (b5 and b9 ), DivCon with LNS and δ0,8

GD is unable to generate any
variants, whereas for three of the benchmarks (b1, b3, and b13 ) it generates a large number
of variants without quality loss. Among the benchmarks that are dominated by the first
bucket (0% gadget survival rate), the rates range from 52% up to 100%. These results
indicate that it is possible to achieve high security-aware diversity without sacrificing code
quality.

Second, the results show that the effectiveness of DivCon at diversifying gadgets can be
further increased by relaxing the constraint on code quality, with diminishing returns beyond
p = 10%. Increasing the optimality gap to just p = 5% makes 0% survival rate (column
=0 ) the dominating bucket for all benchmarks except b5. Benchmark b5 is subjected to
hard register allocation constraints, which reduces DivCon’s gadget diversification ability.

1493



Tsoupidi, Castañeda Lozano, & Baudry

Table 10: Gadget survival rate for different optimality gap values of the Gadget Distance
(δ0,8
GD) using LNS

ID
p = 0% p = 5% p = 10% p = 20%

=0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num

b1 93 3 4 - 200 89 9 2 - 200 92 7 1 - 200 98 1 1 - 200
b2 93 - 7 - 20 90 4 6 - 200 90 4 6 - 200 90 4 5 - 200
b3 80 13 6 1 149 90 5 5 - 200 89 6 5 - 200 93 3 4 - 200
b4 98 1 - - 24 97 3 - - 200 97 3 - - 200 98 2 - - 200
b5 - - - - - 10 13 42 35 29 48 28 20 3 178 66 18 14 2 200
b6 91 5 4 - 110 92 4 4 - 200 92 4 4 - 200 94 3 3 - 200
b7 38 48 14 - 82 85 14 1 - 200 87 12 1 - 200 89 10 1 - 200
b8 60 30 10 - 40 89 10 1 - 200 88 11 1 - 200 90 9 1 - 200
b9 - - - - - 59 28 13 - 171 66 24 10 - 167 66 23 11 - 167
b10 75 3 3 19 4 99 - 1 1 200 99 - 1 1 200 99 - - - 193
b11 84 14 2 - 87 82 17 2 - 190 79 20 2 - 198 84 14 1 - 199
b12 82 15 3 - 12 90 9 1 - 36 87 12 1 - 48 90 9 1 - 57
b13 100 - - - 175 96 1 2 - 200 97 1 2 - 200 97 1 1 - 200
b14 52 41 7 - 3 88 11 1 - 25 85 14 1 - 31 91 8 1 - 44

The rate of the variant pairs that do not share any variants ranges from 59 percent for b9
to 99 percent for b10. Further increasing the gap to 10% and 20% increases significantly
the number of pairs that share no gadgets (column =0 ). For example, with an optimality
gap of p = 10%, the dominating bucket for all benchmarks corresponds to 0% survival
rate (column =0 ) and ranges from 48% (b5 ) to 99% (b10 ) of the total solution pairs. An
optimality gap of p = 20% improves further the effectiveness of DivCon. The improvement
is substantial for benchmark b5, where the register allocation of this benchmark is highly
constrained. Larger optimality gap allows the generation of more solutions that differ with
regards to the instructions schedule. This leads to an improvement indicated by an increase
in the rate of the first bucket (column =0 ) from 48% for p = 10% to 66% for p = 20%.

Related approaches (discussed in Section 5) report the average gadget elimination rate
across all pairs for different benchmark sets. The zero-cost approach of Pappas et al. (2012)
achieves an average gadget elimination rate between 74%− 83% without code degradation,
comparable to DivCon’s 93% − 100% at p = 0% (including only benchmarks for which
DivCon generates variants). Homescu et al. (2013) propose a statistical approach that
reports an average srate between 82% − 100% with a code degradation of less than 5%,
comparable to DivCon’s 62%− 100% at p = 5%. Both approaches report results on larger
code bases that exhibit more opportunities for diversification. We expect that DivCon would
achieve higher overall survival rates on these code bases compared to the benchmarks used
in this paper as we can see in case study of RQ6 (Section 4.7).

Conclusion. Empirical evidence shows that DivCon with the LNS algorithm and distance
measure δ0,8

GD achieves high JOP gadget diversification rate without sacrificing code quality.
Increasing the optimality gap to just 5% improves the effectiveness of DivCon significantly,
while further increase in the optimality gap does not have a similarly large effect on gadget
diversity.

1494



Constraint-based Diversification of JOP Gadgets

Table 11: G.721 functions

ID app module function name #blocks #instructions LNS time (s) DLNS time (s)
g1 g721 g711 ulaw2linear 1 14 0.4 ± 0.0 7.8 ±0.0
g2 g721 g711 alaw2ulaw 4 19 0.8 ± 0.0 52.6 ±0.0
g3 g721 g711 ulaw2alaw 4 22 1.3 ± 0.0 34.8 ±0.0
g4 g721 g711 alaw2linear 6 23 0.9 ± 0.0 22.5 ±0.0
g5 g721 g72x reconstruct 4 24 0.8 ± 0.0 22.4 ±0.0
g6 g721 g72x step size 7 27 3.2 ± 0.0 7.1 ±0.0
g7 g721 g72x predictor pole 1 28 2.4 ± 0.0 15.8 ±0.0
g8 g721 g72x g72x init state 1 29 1.1 ± 0.0 3.1 ±0.0
g9 g721 g711 linear2ulaw 11 54 6.0 ± 0.0 9.1 ±0.0
g10 g721 g711 linear2alaw 13 60 30.5 ± 0.0 6.7 ±0.0
g11 g721 g72x tandem adjust ulaw 9 75 140.8 ± 0.8 6.8 ±0.0
g12 g721 g72x predictor zero 1 77 43.8 ± 0.1 5.3 ±0.0
g13 g721 g72x tandem adjust alaw 13 89 182.1 ± 0.9 8.1 ±0.0
g14 g721 g72x quantize 23 99 246.2 ± 0.2 17.9 ±0.0
g15 g721 g721 g721 encoder 7 135 214.7 ± 0.4 11.0 ±0.0
g16 g721 g721 g721 decoder 7 135 323.3 ± 6.3 10.7 ±0.0
g17 g721 g72x update 105 523 - 128.0±1.1
g18 main main main 9 40 7.3 ± 0.0 7.8 ±0.0
g19 main main pack output 3 23 0.8 ± 0.0 6.5 ±0.0
g20 stubs stubs nmi handler 2 1 - (1) - (1)
g21 stubs stubs on bootstrap 1 1 - (1) - (1)
g22 stubs stubs on reset 1 1 - (1) - (1)

4.7 RQ6. Case Study: Effectiveness of DivCon at the Application Level

DivCon operates at the function level. In this section, we evaluate the effectiveness of
DivCon against JOP attacks for programs that consist of multiple functions. To do that,
we study an application from MediaBench I and evaluate it using the JOP gadget survival
rate as in RQ3, RQ4, and RQ5. To diversify a program, we diversify the functions that
comprise this program and then combine them randomly. This approach results in up to
nf different variants, where n is the number of variants per function and f the number of
functions in the program. If we also perform function permutation, the number of possible
program variants increases to f ! · nf .

We apply these methods on G.721, an application of the MediaBench I benchmark
suite (Lee et al., 1997). This application is an implementation of the International Telegraph
and Telephone Consultative Committee (CCITT) G.711, G.721, and G.723 voice compres-
sion algorithms. We compile G.721 for the MIPS32-based Pic32MX microcontroller5.

Table 11 shows 1) the functions that comprise the G.721 application, 2) a custom main

function6 that performs encoding, and 3) a number of required system functions, stubs.
The columns show the number of basic blocks (#blocks), the number of MIR instructions
(#instructions) and the diversification time in seconds for generating 200 variants using LNS
(LNS time (s)) and DLNS (DLNS time (s)) after running the experiment five times with

5. PIC32MX Microprocessor Family: https://www.microchip.com/en-us/products/

microcontrollers-and-microprocessors/32-bit-mcus/pic32-32-bit-mcus/pic32mx

6. The main function is a simplified version of the encoding example that g721 provides.

1495

https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/pic32-32-bit-mcus/pic32mx
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/pic32-32-bit-mcus/pic32mx


Tsoupidi, Castañeda Lozano, & Baudry

Table 12: Gadget survival rate for 10% optimality gap with the Hamming distance, δHD,
for the G.721 application with function randomization at link level (FS) and without (NFS)

App
NFS FS

=0 ≤0.5 ≤1 ≤2 ≤5 ≤10 ≤40 ≤100 num =0 ≤0.5 ≤1 ≤2 ≤5 ≤10 ≤40 ≤100 num

G.721 85 12 1 1 - - - - 200 98 2 - - - - - - 200

the same random seed (seed = 42). The stubs functions consist of two empty functions
(on reset and on bootstrap) and one function (nmi handler) that contains one empty
infinite loop. These functions contain only one MIR instruction each, and, therefore, there
are no variants within a 10% optimality gap. We diversify the rest of the functions using
DivCon with 0.5 relax rate, 10% optimality gap, and a time limit of 20 minutes. We run
the experiment using the same random seed for DivCon and the function randomization.
For the cases that LNS manages to generate all variants (all but g17 ), we use the LNS-
generated variants and for the rest of the benchmarks (g17 ), we use DLNS. For compiling
the application, we generate the textual assembly code of the function variants using DivCon
and llc. To compile and link the application, we use a Pic32MX microcontroller toolchain7

that uses gcc. To deactivate instruction reordering by gcc, llc sets the noreorder directive.

For combining the functions in the final binaries, we use two approaches, 1) No Function
Shuffling (NFS), which generates the binary combining the different function variants in
the same order and 2) Function Shuffling (FS), which randomizes the function order at the
linking time.

Table 12 shows the results of the diversification of G.721 using the NFS and FS schemes
after generating 200 variants of the G.721 application. The results show that combining
the diversified variants without shuffling the functions at link time (NFS) results in most of
the variants, 85% of the pairs, sharing no gadgets, while 12% share between 0% and 0.5%
of the gadgets. We calculate the average of gadget survival rate over the variant pairs as
0.068±0.128%. Using function shuffling at link time (FS) results in 0.008±0.008% average
gadget survival rate, with 98% of all variant pairs not sharing any gadget (first bucket).
This shows that the fine-grained diversification of DivCon using function shuffling improves
further the result for NFS.

Conclusion. In this case study, we show that with our method, we are able to diversify
whole programs and not just functions. Additionally, we show that randomly combining
the diversified functions using DivCon achieves the diversification and/or relocation of JOP
gadgets with an average of less than 0.1% survival rate in a multi-function program. Func-
tion shuffling reduces further the gadget survival rate to approximately 0.01% survival rate,
indicating that hardly any variant pairs share gadgets.

4.8 Discussion

This section discusses two main topics, 1) the use of DivCon against more advanced attacker
models, and 2) scalability limitations of our approach and how to address them.

7. https://github.com/is1200-example-projects/mcb32tools

1496

https://github.com/is1200-example-projects/mcb32tools


Constraint-based Diversification of JOP Gadgets

Advanced code-reuse attacks. Our attack model considers basic-ROP/JOP attacks.
However, in literature there exist more advanced attacks, like JIT-ROP (Snow et al., 2013),
where the attacker is able to read the code from the memory and identify gadgets dur-
ing the attack. Static diversification of a binary is not effective against these types of
attacks. Instead, some approaches (Chen, Wang, Whalley, & Lu, 2016; Williams-King,
Gobieski, Williams-King, Blake, Yuan, Colp, Zheng, Kemerlis, Yang, & Aiello, 2016) use
re-randomization, a technique to re-randomize the binary by switching between variants of
the code at run time. Using our approach, it is possible to perform re-randomization of an
application by switching between different function variants that DivCon generates.

Large Functions. Unison is not scalable to large functions for MIPS (Castañeda Lozano
et al., 2019) and in this paper we have evaluated DivCon for functions up to 523 lines of
LLVM MIR instructions. However, there are functions that are larger than what Unison
supports. In particular, in MediaBench I, approximately 7% of the functions contain more
than 500 instructions. For these cases, one may use other diversification schemes for just
these functions and DivCon for the rest of the functions. Another approach is to deactivate
some of the transformations that Unison and DivCon perform for larger benchmarks or
improve the scalability of Unison (Castañeda Lozano et al., 2019). We leave this as future
work.

5. Related Work

State of the art software diversification techniques apply randomized transformations at
different stages of the software development. Only a few exceptions use search-based tech-
niques (Larsen et al., 2014). This section focuses on quality-aware software diversification
approaches.

Superdiversifier (Jacob et al., 2008) is a search-based approach for software diversifica-
tion against cyberattacks. Given an initial instruction sequence, the algorithm generates a
random combination of the available instructions and performs a verification test to quickly
reject non equivalent instruction sequences. For each non-rejected sequence, the algorithm
checks semantic equivalence between the original and the generated instruction sequences
using a SAT solver. Superdiversifier affects the code execution time and size by controlling
the length of the generated sequence. A recent approach, Crow (Arteaga et al., 2021),
presents a superdiversification approach as a security mitigation for the Web. Along the
same lines, Lundquist et al. (2016, 2019) use program synthesis for generating program
variants against cyberattacks, but no results are available, yet. In comparison, DivCon uses
a combinatorial compiler backend that measures the code quality using a more accurate
cost model that also considers other aspects, such as execution frequencies.

Most diversification approaches use randomized transformations in the stack (Lee, Kang,
Jang, & Kang, 2021), on binary code (Wartell et al., 2012; Abrath et al., 2020), at the bi-
nary interface level (Kc, Keromytis, & Prevelakis, 2003), in the compiler (Homescu, Jackson,
Crane, Brunthaler, Larsen, & Franz, 2017) or in the source code (Baudry, Allier, & Mon-
perrus, 2014) to generate multiple program variants. Unlike DivCon, the majority of these
approaches do not control the quality of the generated variants during diversification but
rather evaluate it afterwards (Davi et al., 2013; Wang et al., 2017; Koo et al., 2018; Homescu

1497



Tsoupidi, Castañeda Lozano, & Baudry

et al., 2017; Braden et al., 2016; Crane et al., 2015). However, there are a few approaches
that control the code quality during randomization.

Some compiler-based diversification approaches restrict the set of program transforma-
tions to control the quality of the generated code (Crane et al., 2015; Pappas et al., 2012).
For example, Pappas et al. (2012) perform software diversification at the binary level and
apply three zero-cost transformations: register randomization, instruction schedule random-
ization, and function shuffling. In contrast, DivCon’s combinatorial approach allows it to
control the aggressiveness and potential cost of its transformations: a cost overhead limit
of 0% forces DivCon to apply only zero-cost transformations; a larger limit allows DivCon
to apply more aggressive transformations, potentially leading to higher diversity.

Homescu et al. (2013) perform only garbage (nop) insertion, and use a profile-guided
approach to reduce the overhead. To do this, they control the nop insertion probability
based on the execution frequency of different code sections. In contrast, DivCon’s cost
model captures different execution frequencies, which allows it to perform more aggressive
transformations in non-critical code sections.

6. Conclusion

This paper introduces DivCon, a constraint-based code diversification technique against
code-reuse attacks. The key novelty of this approach is that it supports a systematic
exploration of the trade-off between code diversity and code size and speed. Our experiments
show that Large Neighborhood Search (LNS) is an effective algorithm to explore the space
of diverse binary programs, with a fine-grained control on the trade-off between code quality
and JOP gadgets diversification. In particular, we show that the set of optimal solutions
naturally contains a set of diverse solutions, which increases significantly when relaxing
the constraint of optimality. For improving the effectiveness of our approach against JOP
attacks, we propose a novel gadget-specific distance measure. Our experiments demonstrate
that the diverse solutions generated by DivCon using this distance measure are highly
effective to mitigate JOP attacks.

Acknowledgments

We would like to give a special acknowledgment to Christian Schulte, for his critical contri-
bution at the early stages of this work. Although no longer with us, Christian continues to
inspire his students and colleagues with his lively character, enthusiasm, deep knowledge,
and understanding. We would also like to thank Linnea Ingmar and the anonymous review-
ers of CP2020 and JAIR for their useful feedback, and Oscar Eriksson for proof reading.
This work is partially supported by the Wallenberg AI, Autonomous Systems, and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation and by the TrustFull
project funded by the Swedish Foundation for Strategic Research.

Appendix A. Relax Rate Selection

The LNS configuration of DivCon requires selecting the relax rate. The relax rate is the
probability that LNS destroys a variable at every restart, which affects the distance between

1498



Constraint-based Diversification of JOP Gadgets

two subsequent solutions. A higher relax rate increases diversity but requires more solving
effort.

In LNS, the relax rate, r, affects how many of the assigned variables of the last solution
LNS destroys for finding the next solution. To evaluate that, we use two metrics and RS
as a baseline. Pδ and Pt correspond to the rate of the LNS over RS with regards to the
pairwise distance and the diversification time as follows:

Pδ(δ, S1, S2) =


d(δ, S1)

d(δ, S2)
, d(δ, S1) > d(δ, S2)

d(δ, S2)

d(δ, S1)
, otherwise

(8)

and

Pt(t1, t2) =


t1
t2
, t1 > t2

t2
t1
, otherwise

, (9)

where t1 is the diversification time for generating the solution set S1 for RS and t2 is the
diversification time for generating the solution set S2 for LNS.

Figure 6 depicts the effect of different relax rates on the distance, Pδ, and the diversifi-
cation time, Pt, when generating 200 variants for the 14 benchmarks of Table 2. The figure
shows the results for each of the benchmarks as a separate colored line with the correspond-
ing standard deviation shown in light color. The time limit is ten minutes and the distance
measure is Hamming Distance (HD), δHD. Figure 6a shows that increasing the relax rate
increases the pairwise distance improvement, Pδ, of the generated program variants. Fig-
ure 6b shows the diversification time overhead Pt. This figure shows that low values and
large values of r have large time overhead compared to RS, whereas values r = 0.3, r = 0.4,
r = 0.5, and r = 0.6 have acceptable time overhead. As we have seen in Figure 6a, the
larger the relax rate, the higher the diversity improvement for LNS compared to RS. Im-
proved diversity can be achieved by increasing the relax rate, whereas, moderate relax rate
improves scalaility. Therefore, r = 0.6 is a good trade-off between diversity and scalability.
Ultimately, we would like to automatically select the relax rate that fits a specific function.
We leave this as a future work.

Appendix B. Diversification Example

This section shows a more elaborated example of diversified code using DivCon. Figure 7
shows two variants of function ulaw2alaw from application g721. This function converts
u-law (µ-law) values to a-law (A-law) values. Algorithms µ-law and A-law are the two main
companding algorithms of G.711 (ITU, 1993).

The two variants, Listing 7a and Listing 7b, are generated by DivCon with relax rate
0.6, optimality gap 10%, and the cycle hamming distance, δHD. Figure 7 highlights four
different ways in which the two variants differ.

First, DivCon may add no-operation instructions that affect the memory layout but not
the semantics of the program. Interestingly, DivCon added an empty stack frame to Variant
2. The prologue (line 13 in Variant 2) and epilogue (line 42 in of Variant 2) instructions

1499



Tsoupidi, Castañeda Lozano, & Baudry

0.1 0.2 0.4 0.6 0.8
relax rate

10
1

10
20

50

80

P
(

H
D
,S

LN
S,

S R
S) LNS over RS

(a) Diversity improvement

0.1 0.2 0.4 0.6 0.8
relax rate

10
1

10
20

50

100

P t
(t L

SN
,t

RS
) LNS over RS

(b) Diversification time overhead

Figure 6: Improvement in diversity and diversification time overhead of LNS over RS for
different values of the relax rate and the Hamming Distance δHD

that build and destroy the empty stack frame are no-operations, however they contribute
to the diversification of the function. Otherwise, DivCon adds MIPS nop instructions to fill
the instruction schedule empty slots including the instruction delays due to their execution
latency (see lines 19 and 20 of Variant 1). DivCon may add no-operations as long as the
overhead they introduce does not exceed the allowed optimality gap.

Another transformation is the addition of copy operations to move data from one register
to the other (highlighted at line 16 of Variant 1). This transformation assists register
renaming, which improves diversification.

The third transformation that we have highlighted (lines 18-21 of Variant 1 and lines
17-18 of Variant 2) is instruction reordering. Here, whenever there is no data dependency
between the instructions, the order of the instructions might change. Instruction reordering
may break gadgets because the attacker expects a different instruction than the reordered
instruction that is present at the same address.

Finally, the register assignment of different operations differs, with an example high-
lighted at line 26 of Variant 1 and line 25 of Variant 2. Register renaming breaks the
attacker assumptions about the register that each gadget affects and uses. Other transfor-
mations, like spilling to the stack, are also possible. The function of Figure 7 is small and
does not require spilling. However, DivCon may enable spilling if the overhead is not more
than the allowed optimality gap (10% here).

Figure 7 shows some of the gadgets that are available in function ulaw2alaw surrounded
in dotted rectangles. Interestingly, both variants contain a number of gadgets that all
include the last gadget. This last gadget consists of a return jump, jr, and its delay slot,
i.e. the instruction that follows the branch but is executed before it. No pair of gadgets in
the two variants is identical with regards to either the content or the position in the code.

1500



Constraint-based Diversification of JOP Gadgets

1 ulaw2alaw:

# @ulaw2alaw

2 .frame $sp ,0,$ra

3 .mask 0x00000000 ,0

4 .fmask 0x00000000 ,0

5 .set noreorder

6 .set nomacro

7 .set noat

8 # BB #0:

9 lui $v0 , _gp_disp

10 nop

11 addiu $v0 , $v0 , _gp_disp

12 andi $a2 , $a0 , 128

13 beqz $a2 , $BB0_2

14 addu $t7 , $v0 , $t9

15 # BB #1:

16 move $t9 , $a0

17 move $fp , $t9

18 lw $t2 , _u2a($t7)

19 nop

20 nop

21 xori $t5 , $fp , 255

22 addu $t8 , $t2 , $t5

23 lbu $a1 , 0($t8)

24 nop

25 nop

26 addiu $t8, $a1 , -1

27 b $BB0_3

28 xori $a0 , $t8 , 213

29 $BB0_2:

30 lw $v0 , _u2a($t7)

31 nop

32 nop

33 xori $a1 , $a0 , 127

34 addu $t0 , $v0 , $a1

35 lbu $t3 , 0($t0)

36 nop

37 nop

38 move $t6 , $t3

39 move $a0 , $t6

40 addiu $fp , $a0 , -1

41 xori $a0 , $fp , 85

42 $BB0_3:

43 jr $ra

44 andi $v0 , $a0 , 255

(a) g721.g711.ulaw2alaw - Variant 1

1 ulaw2alaw:

# @ulaw2alaw

2 .frame $sp ,0,$ra

3 .mask 0x00000000 ,0

4 .fmask 0x00000000 ,0

5 .set noreorder

6 .set nomacro

7 .set noat

8 # BB #0:

9 lui $v0 , _gp_disp

10 nop

11 addiu $v0 , $v0 , _gp_disp

12 andi $fp , $a0 , 128

13 addiu $sp , $sp , 0

14 beqz $fp , $BB0_2

15 addu $a1 , $v0 , $t9

16 # BB #1:

17 xori $t5 , $a0 , 255

18 lw $t6 , _u2a($a1)

19 nop

20 nop

21 addu $v0 , $t6 , $t5

22 lbu $t1 , 0($v0)

23 nop

24 nop

25 addiu $t3, $t1 , -1

26 b $BB0_3

27 xori $fp , $t3 , 213

28 $BB0_2:

29 xori $a3 , $a0 , 127

30 lw $t4 , _u2a($a1)

31 nop

32 nop

33 addu $gp , $t4 , $a3

34 lbu $t2 , 0($gp)

35 nop

36 nop

37 addiu $t6 , $t2 , -1

38 xori $fp , $t6 , 85

39 $BB0_3:

40 andi $v0 , $fp , 255

41 jr $ra

42 addiu $sp , $sp , 0

43 .set at

44 .set macro

gadgets

register
renaming

instruction
reordering

copy

nop

(b) g721.g711.ulaw2alaw - Variant 2

Figure 7: Example function diversification in MIPS32 assembly code

References

Abrath, B., Coppens, B., Mishra, M., den Broeck, J. V., & Sutter, B. D. (2020). Break-
pad: Diversified binary crash reporting. IEEE Transactions on Dependable Secure
Computing, 17 (4), 841–856.

Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of Things
security: A survey. Journal of Network and Computer Applications, 88, 10–28.

1501



Tsoupidi, Castañeda Lozano, & Baudry

Arteaga, J. C., Malivitsis, O. F., Pérez, O. L. V., Baudry, B., & Monperrus, M. (2021).
Crow: Code diversification for webassembly. In MADWeb’21-NDSS Workshop on
Measurements, Attacks, and Defenses for the Web.

Ashouri, A. H., Killian, W., Cavazos, J., Palermo, G., & Silvano, C. (2018). A survey
on compiler autotuning using machine learning. ACM Computing Surveys (CSUR),
51 (5), 1–42.

Baudry, B., Allier, S., & Monperrus, M. (2014). Tailored source code transformations to
synthesize computationally diverse program variants. In Proc. of ISSTA, pp. 149–159.

Baudry, B., & Monperrus, M. (2015). The Multiple Facets of Software Diversity: Recent
Developments in Year 2000 and Beyond. ACM Comput. Surv., 48 (1), 16:1–16:26.

Birman, K. P., & Schneider, F. B. (2009). The monoculture risk put into context. IEEE
Security & Privacy, 7 (1), 14–17.

Bletsch, T., Jiang, X., Freeh, V. W., & Liang, Z. (2011). Jump-oriented Programming:
A New Class of Code-reuse Attack. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’11, pp. 30–40, New
York, NY, USA. ACM.

Braden, K., Crane, S., Davi, L., Franz, M., Larsen, P., Liebchen, C., & Sadeghi, A.-R.
(2016). Leakage-Resilient Layout Randomization for Mobile Devices. In Proceedings
2016 Network and Distributed System Security Symposium, San Diego, CA. Internet
Society.

Castañeda Lozano, R., Carlsson, M., Blindell, G. H., & Schulte, C. (2019). Combinatorial
Register Allocation and Instruction Scheduling. ACM Trans. Program. Lang. Syst.,
41 (3), 17:1–17:53.

Castañeda Lozano, R., Carlsson, M., Drejhammar, F., & Schulte, C. (2012). Constraint-
Based Register Allocation and Instruction Scheduling. In Milano, M. (Ed.), Principles
and Practice of Constraint Programming, Lecture Notes in Computer Science, pp.
750–766, Berlin, Heidelberg. Springer.

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., & Winandy, M.
(2010). Return-oriented Programming Without Returns. In Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS ’10, pp. 559–572,
New York, NY, USA. ACM.

Chen, Y., Wang, Z., Whalley, D., & Lu, L. (2016). Remix: On-demand Live Randomization.
In Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, CODASPY ’16, pp. 50–61, New York, NY, USA. Association for Computing
Machinery.

Chu, G. G. (2011). Improving combinatorial optimization. Ph.D. thesis, The University of
Melbourne, Australia.

Cohen, F. B. (1993). Operating system protection through program evolution.. Comput.
Secur., 12 (6), 565–584.

Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A., Brunthaler, S.,
& Franz, M. (2015). Readactor: Practical Code Randomization Resilient to Memory
Disclosure. In 2015 IEEE Symposium on Security and Privacy, pp. 763–780.

1502



Constraint-based Diversification of JOP Gadgets

Davi, L. V., Dmitrienko, A., Nrnberger, S., & Sadeghi, A.-R. (2013). Gadge me if you
can: secure and efficient ad-hoc instruction-level randomization for x86 and ARM.
In Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security, pp. 299–310. tex.organization: ACM.

Forrest, S., Somayaji, A., & Ackley, D. H. (1997). Building diverse computer systems.
In Proceedings. The Sixth Workshop on Hot Topics in Operating Systems (Cat. No.
97TB100133), pp. 67–72. IEEE.

Gecode Team (2020). Gecode: Generic constraint development environment. Online:
https://www.gecode.org.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell system
technical journal, 29 (2), 147–160.

Hebrard, E., Hnich, B., O’Sullivan, B., & Walsh, T. (2005). Finding Diverse and Similar So-
lutions in Constraint Programming. In National Conference on Artificial Intelligence
and the Seventeenth Innovative Applications of Artificial Intelligence Conference, p. 6.

Homescu, A., Jackson, T., Crane, S., Brunthaler, S., Larsen, P., & Franz, M. (2017). Large-
Scale Automated Software Diversity—Program Evolution Redux. IEEE Transactions
on Dependable and Secure Computing, 14 (2), 158–171.

Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., & Franz, M. (2013). Profile-guided
Automated Software Diversity. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), CGO ’13, pp. 1–11, Wash-
ington, DC, USA. IEEE Computer Society.

Ingmar, L., de la Banda, M. G., Stuckey, P. J., & Tack, G. (2020). Modelling diversity of
solutions. In Proceedings of the thirty-fourth AAAI conference on artificial intelligence.

ITU, T. (1993). General aspects of digital transmission systems. ITU-T Recommendation
G, 729.

Jacob, M., Jakubowski, M. H., Naldurg, P., Saw, C. W. N., & Venkatesan, R. (2008). The
Superdiversifier: Peephole Individualization for Software Protection. In Matsuura, K.,
& Fujisaki, E. (Eds.), Advances in Information and Computer Security, Lecture Notes
in Computer Science, pp. 100–120, Berlin, Heidelberg. Springer.

Kc, G. S., Keromytis, A. D., & Prevelakis, V. (2003). Countering code-injection attacks
with instruction-set randomization. In Proc. of CCS, pp. 272–280.

Koo, H., Chen, Y., Lu, L., Kemerlis, V. P., & Polychronakis, M. (2018). Compiler-Assisted
Code Randomization. In 2018 IEEE Symposium on Security and Privacy (SP), pp.
461–477.

Kornau, T., et al. (2010). Return oriented programming for the ARM architecture. Master’s
thesis, Ruhr-Universität Bochum.

Krueger, C. W. (1992). Software reuse. ACM Comput. Surv., 24 (2), 131–183.

Larsen, P., Homescu, A., Brunthaler, S., & Franz, M. (2014). SoK: Automated Software
Diversity. In 2014 IEEE Symposium on Security and Privacy, pp. 276–291.

Lattner, C., & Adve, V. (2004). LLVM: A compilation framework for lifelong program
analysis & transformation. In Code Generation and Optimization. IEEE.

1503



Tsoupidi, Castañeda Lozano, & Baudry

Lee, C., Potkonjak, M., & Mangione-Smith, W. H. (1997). MediaBench: A tool for eval-
uating and synthesizing multimedia and communicatons systems. In International
Symposium on Microarchitecture, pp. 330–335. IEEE.

Lee, S., Kang, H., Jang, J., & Kang, B. B. (2021). Savior: Thwarting stack-based memory
safety violations by randomizing stack layout..

Lundquist, G. R., Bhatt, U., & Hamlen, K. W. (2019). Relational processing for fun and di-
versity. In Proceedings of the 2019 miniKanren and relational programming workshop,
p. 100.

Lundquist, G. R., Mohan, V., & Hamlen, K. W. (2016). Searching for Software Diversity:
Attaining Artificial Diversity Through Program Synthesis. In Proceedings of the 2016
New Security Paradigms Workshop, NSPW ’16, pp. 80–91, New York, NY, USA.
ACM.

Pappas, V., Polychronakis, M., & Keromytis, A. D. (2012). Smashing the Gadgets: Hin-
dering Return-Oriented Programming Using In-place Code Randomization. In 2012
IEEE Symposium on Security and Privacy, pp. 601–615.

Petit, T., & Trapp, A. C. (2015). Finding Diverse Solutions of High Quality to Constraint
Optimization Problems. In Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence.

Salehi, M., Hughes, D., & Crispo, B. (2019). Microguard: Securing bare-metal microcon-
trollers against code-reuse attacks. In 2019 IEEE Conference on Dependable and
Secure Computing (DSC), pp. 1–8. IEEE.

Salwan, J. (2020). ROPgadget Tool. Online: http://shell-storm.org/project/ROPgadget/.

Shacham, H. (2007). The Geometry of Innocent Flesh on the Bone: Return-into-libc With-
out Function Calls (on the x86). In Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS ’07, pp. 552–561, New York, NY, USA.
ACM.

Shaw, P. (1998). Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. In Maher, M., & Puget, J.-F. (Eds.), Principles and Practice of
Constraint Programming — CP98, Lecture Notes in Computer Science, pp. 417–431,
Berlin, Heidelberg. Springer.

Snow, K. Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., & Sadeghi, A. (2013).
Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space Layout
Randomization. In 2013 IEEE Symposium on Security and Privacy, pp. 574–588.

Sweetman, D. (2006). See MIPS Run, Second Edition. Morgan Kaufmann.

Tsoupidi, R. M., Castañeda Lozano, R., & Baudry, B. (2020). Constraint-based software di-
versification for efficient mitigation of code-reuse attacks. In International Conference
on Principles and Practice of Constraint Programming, pp. 791–808. Springer.

Van Hentenryck, P., Coffrin, C., & Gutkovich, B. (2009). Constraint-Based Local Search for
the Automatic Generation of Architectural Tests. In Gent, I. P. (Ed.), Principles and
Practice of Constraint Programming - CP 2009, Lecture Notes in Computer Science,
pp. 787–801. Springer Berlin Heidelberg.

1504



Constraint-based Diversification of JOP Gadgets

Wagner, R. A., & Fischer, M. J. (1974). The string-to-string correction problem. Journal
of the ACM (JACM), 21 (1), 168–173.

Wang, S., Wang, P., & Wu, D. (2017). Composite Software Diversification. In 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp. 284–
294.

Wartell, R., Mohan, V., Hamlen, K. W., & Lin, Z. (2012). Binary Stirring: Self-randomizing
Instruction Addresses of Legacy x86 Binary Code. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pp. 157–168, New
York, NY, USA. ACM.

Williams-King, D., Gobieski, G., Williams-King, K., Blake, J. P., Yuan, X., Colp, P., Zheng,
M., Kemerlis, V. P., Yang, J., & Aiello, W. (2016). Shuffler: Fast and Deployable
Continuous Code Re-Randomization.. pp. 367–382.

1505


	Introduction
	Background
	JOP Attacks
	Attack Model
	Diversity in Constraint Programming
	Compiler Optimization as a Combinatorial Problem 

	DivCon
	Problem Description
	Diversification Algorithms
	Distance Measures
	Search

	Evaluation
	Experimental Setup
	RQ1. Scalability and Diversification Effectiveness of LNS and DLNS
	RQ2. Scalability of LNS with Different Distance Measures
	RQ3. JOP Attacks Mitigation: Effectiveness of LNS and DLNS
	RQ4. JOP Attacks Mitigation: Effectiveness of Different Distance Measures
	RQ5. JOP Attacks Mitigation: Effectiveness for Different Optimality Gaps
	RQ6. Case Study: Effectiveness of DivCon at the Application Level
	Discussion

	Related Work
	Conclusion
	Relax Rate Selection
	Diversification Example
	References


