
Generating Optimized and Secure Binary Code

RODOTHEA MYRSINI TSOUPIDI

Doctoral Thesis in Information and Communication Technology
Stockholm, Sweden, 2023



TRITA-EECS-AVL-2023:44
978-91-8040-591-1

KTH Royal Institute of Technology
School of Electrical Engineering and Computer Science

Division of Software and Computer Systems
SE-10044 Stockholm

Sweden

Akademisk avhandling som med tillst̊and av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av Teknologie doktorexamen i elektroteknik
Onsdag den 7 juni 2023 klockan 13.00 i Sal F3, Lindstedtsvägen 26/28, Kungliga
Tekniska Högskolan, Stockholm.

© Rodothea Myrsini Tsoupidi, June 7th, 2023

Tryck: Universitetsservice US AB



i

Abstract

The increased digitalization of modern societies has resulted in a proliferation
of a broad spectrum of embedded devices, ranging from personal smartphones
and heart pacemakers to large-scale industrial IoT systems. Since they often
handle various sensitive data, these devices increasingly become the targets of
cyberattacks that threaten the integrity of personal data, financial security,
and sometimes even people’s safety.

A common source of security vulnerabilities in computing systems is soft-
ware. Nowadays, the vast majority of embedded software is written in high-
level programming languages and compiled to low-level assembly code using
general-purpose compilers. However, general-purpose compilers typically ig-
nore security aspects and mainly focus on improving performance and re-
ducing the code size. Meanwhile, the security-targeting compilers often pro-
duce code that is suboptimal with respect to performance. This security-
performance gap is particularly detrimental for embedded devices that are
usually battery-operated and hence, have stringent restrictions on memory
size and power consumption.

Among the most frequently carried out cyberattacks are code-reuse at-
tacks. They insert data into the victim system via memory-corruption vul-
nerabilities to redirect the control flow and hijack the system. Automatic
software diversification is an efficient mitigation approach against code-reuse
attacks, however, it typically does not allow us to explicitly control of the
introduced performance overhead.

Another large class of attacks is side-channel attacks. Such attacks often
target cryptographic implementations and aim at extracting the information
about the processed data by recording side-channel information, such as the
execution time or the power consumption of the victim system. Typically,
protection against side-channel attacks relies on software-based mitigations,
which may lead to high performance overhead. An attacker that attempts to
hijack the victim system may use either or both of these attacks and hence,
often multiple mitigations have to be combined together to protect a system.

This dissertation proposes Secure-by-Construction Optimization (Sec-
Opt), a constraint-based approach that combines performance goals with
security mitigations. More specifically, SecOpt achieves performance-aware
automatic code diversification against code-reuse attacks, while it generates
highly-optimized code that preserves software mitigations against side-
channel attacks. A key advantage of SecOpt is composability, namely the
ability to combine conflicting mitigations and generate code that preserves
these mitigations. In particular, SecOpt generates diverse code variants that
are secure against side-channel attacks, therefore protecting against both
code-reuse and side-channel attacks.

SecOpt features unique characteristics compared to conventional compiler-
based approaches, including performance-awareness and mitigation compos-
ability in a formal framework. Since the combined security and performance
goals are especially important for resource-constrained systems, SecOpt con-
stitutes a practical approach for optimizing performance- and security-critical
code for embedded devices.



ii

Sammanfattning

Den ökande digitaliseringen av det moderna samhället har orsakat snabb
spridning av ett brett utbud av inbyggda system, allt fr̊an smarta mobil-
telefoner och hjärtstimulatorer, till storskaliga industriella IoT system. Dessa
datorenheter blir allt oftare m̊al för cyberangrepp som hotar den personliga
integriteten, den ekonomiska säkerheten och ibland även människors säkerhet.

En vanlig källa till säkerhetss̊arbarheter i datasystem är mjukvara. Nu för
tiden är majoriteten av mjukvaran för inbyggda system skriven i högniv̊apro-
grammeringsspr̊ak som kompileras till maskinkod med hjälp av konventionella
kompilatorer. Dessa kompilatorer tar ofta inte hänsyn till säkerhetsaspekter i
programmets källkod och fokuserar istället p̊a att förbättra prestanda och re-
ducera kodstorlek. Samtidigt producerar säkerhetsinriktade kompilatorer ofta
kod som är suboptimal med avseende p̊a prestanda. Denna diskrepans mel-
lan säkerhet och prestanda är problematisk för inbyggda system med stränga
restriktioner vad gäller minnesanvändning och energiförbrukning.

Kod̊ateranvändningsattacker är en av de vanligaste typer av cyberan-
grepp. Dessa cyberangrepp injicerar data i det angripna systemet, via en
minneskorruptionss̊arbarhet, som ger möjlighet att dirigera om mjukvarans
kontrollflöde och kapa systemet. Automatiserad mjukvarudiversifiering är en
effektiv skydds̊atgärd mot kod̊ateranvändningsattacker men nuvarande meto-
der till̊ater inte explicit styrning av prestandaförsämringen. En annan stor cy-
berangreppsklass är sidokanalsattacker. Dessa cyberangrepp riktas ofta mot
kryptografiska implementeringar och syftar till att utvinna säkerhetsviktig
information som berör den behandlade datan. Angriparen läser av sidokanal-
sinformation under programmets exekvering, s̊asom exekveringstid eller ener-
giförbrukning. Vanliga skydds̊atgärder mot sidokanalsattacker är mjukvaru-
åtgärder, som dessvärre kan leda till stor prestandaförsämring. En angripare
som försöker kapa ett system kan använda en eller flera metoder för att utföra
dessa cyberangrepp. Därför måste ofta olika skydds̊atgärder kombineras för
att skydda ett system.

Denna avhandling introducerar Säker-vid-Konstruktion Kodoptime-
ring (SecOpt), en villkorsbaserad kompileringsmetod som kombinerar
prestandam̊al med skydds̊atgärder. Närmare bestämt utför SecOpt pre-
standamedveten automatisk diversifiering mot kod̊ateranvändningsattacker
och genererar optimerad kod som bibeh̊aller mjukvarůatgärder mot sido-
kanalsattacker. SecOpts nykelegenskap är dess möjlighet att kombinera
motstridiga skydds̊atgärder p̊a ett sätt som bevarar dessa skydds̊atgärders
egenskaper. Mer specifikt skapar SecOpt m̊angfaldiga kodvarianter som
uppfyller säkerhetskrav mot sidokanalsattacker, vilket skyddar b̊ade mot
kod̊ateranvändningsattacker och sidokanalsattacker.

SecOpt har unika egenskaper jämfört med konventionella kompileringsme-
toder, s̊asom prestandamedvetenhet och komponering av olika skydds̊atgärder
i ett formellt ramverk. Kombinationen av säkerhets- och prestandam̊al är
särskilt viktig för resursbegränsade inbyggda system. Sammanfattningsvis är
SecOpt en praktisk metod för att optimera säkerhetskritisk kod.



To my grandparents Myrsini and Stratis





Acknowledgments

First, I would like to thank my main supervisor Elena Troubitsyna, who trusted
my work and supported me during my PhD. This dissertation would not have been
possible without her trust, support, research advice, and supervision. I would also
like to thank my co-advisor Panos Papadimitratos, who helped me focus on the
security angle of my work and the presentation of my research results. I want to
thank my former co-advisor Roberto Castañeda Lozano for teaching me a lot about
presenting and writing research, supporting me during my studies, and continuing
to advise and work with me until the end of my studies. A special thanks to
Christian Schulte, who taught me all I know about Constraint Programming and
gave me the opportunity to work on an exciting project that is the basis of this
dissertation. You were an inspiration for my work, and you are dearly missed.
In addition, I am especially grateful to Thomas Sjöland for his significant and
continuous support. I want to thank Fernando Magno Quintão Pereira for serving
as the opponent of this dissertation, Elisavet Kozyri, Christoph Kessler, and Marjan
Sirjani for serving on the grading committee, Vladimir Vlassov for serving as a chair
at my defense, and Roberto Guanciale for acting as the advanced reviewer for my
thesis.

Big thanks to my friends and colleagues Amir M. Ahmadian, Nicolas Harrand,
and Javier Cabrera Arteaga for improving the quality of my work and the quality
of my life with many discussions, fikas, and activities inside and outsite KTH.
I also want to thank my friends and colleagues, Saranya Natarajan, Alexandros
Milolidakis, Orestis Floros, Nadia Campo Woytuk, Negar Safinianaini, Andreas
Lindner, Deepika Tiwari, Anoud Alshnakat, Daniel Lundén, Gizem Çaylak, Tianze
Wang, Han Fu, Linnea Stjerna, Javier Ron Arteaga, and Viktor Palmkvist, for the
lunch and fika conversations, board-game nights, and taking care of my cats! I
want to especially thank my parents, my grandmother Myrsini and my grandfather
Stratis, my sister Sofia, my two brothers Panagiotis and Stratis, and recently my
niece Marielsa, for their endless support and trust in me. Last but not least, I want
to thank Oscar for all his continuous support, patience, and for sharing good and
bad moments.

v



Contents

Contents vi

Thesis ix

1 Introduction 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Sustainability and Ethics . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Cybersecurity Threats and Mitigations . . . . . . . . . . . . . . . . . 9
2.2 Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Compiler Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Approach and Methodology 25
3.1 Secure-by-Design Optimization (SecOpt) . . . . . . . . . . . . . . . . 25
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Related Work 37
4.1 Code-Reuse Attacks Mitigations . . . . . . . . . . . . . . . . . . . . 37
4.2 Defending Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . 39
4.3 Secure Compilation and Optimization . . . . . . . . . . . . . . . . . 42

5 Summary of Publications 45
5.1 Publication 1: Constraint-Based Software Diversification for Effi-

cient Mitigation of Code-Reuse Attacks . . . . . . . . . . . . . . . . 45
5.2 Publication 2: Constraint-Based Diversification of JOP Gadgets . . 46
5.3 Publication 3: Vivienne: Relational Verification of Cryptographic

Implementations in WebAssembly . . . . . . . . . . . . . . . . . . . 46

vi



CONTENTS vii

5.4 Publication 4: Securing Optimized Code Against Power Side Channels 47
5.5 Publication 5: Thwarting Code-Reuse and Side-Channel Attacks in

Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusion and Future Work 49
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References 53

I Included Publications 63

A Publication 1 65

B Publication 2 85

C Publication 3 121

D Publication 4 133

E Publication 5 151





Thesis

ix





Chapter 1

Introduction

The increasing digitalization of modern societies has created the need to protect
sensitive data and safety-critical systems from malicious actors. Embedded de-
vices, such as medical implants, traffic controllers, and car microcontrollers, are
safety-critical systems that require preserving strict safety and security require-
ments. In addition, embedded devices are often battery driven, and thus, resource
constrained [1].

Despite long-term efforts to identify and remove security vulnerabilities in soft-
ware systems, computer systems are still vulnerable to security threats. These
vulnerabilities are the result of design decisions, human errors, connectivity via
public network, public exposure of the hardware, and/or insufficient control to en-
sure information security [2]. Furthermore, embedded software is typically written
in unsafe languages, such as C and C++, which supports a wide range of target
architectures. Mitigating these security vulnerabilities requires vulnerable software
and/or hardware changes. Changes in the software are easier to implement and
deliver than hardware due to the long development process of hardware. Software
security mitigation approaches often apply changes to the source code of software
implementations, which is typically compiled to machine code in binary format.

General-purpose compilers focus on the generated codes’ performance efficiency
size; however, they typically do not preserve security properties [3]. In recent years,
secure compilers have aimed to fill this gap and automatically generate secure code.
Unfortunately, these approaches often introduce significant overhead to the perfor-
mance or code size of the generated code [4]. Resource-constrained Internet of
Things (IoT) devices and embedded systems may not afford software mitigations
that introduce high performance and code-size overhead. This performance-security
gap in compiler approaches creates the need for approaches that mitigate cyber-
attacks while generating highly optimized code. Constraint-based modeling and
solving is a naturally versatile framework that allows the expression of diverse
properties. Constraint-based compiler methods trade high-optimality guarantees,
composability, and formal guarantees for compilation time [5].

1



2 CHAPTER 1. INTRODUCTION

Among the most powerful software-induced cyberattacks are code-reuse at-
tacks [6]. These attacks insert data into the victim system via memory-corruption
vulnerabilities to redirect the control flow and hijack the system. Automatic soft-
ware diversification investigates the automatic generation of diverse program vari-
ants and is an efficient mitigation approach against code-reuse attacks [7]. Although
the reported performance overhead is typically low [8], few approaches allow con-
trol over the introduced performance overhead [9] to generate diverse variants with
predictable performance overhead. Furthermore, most automatic software diversi-
fication approaches do not provide any guarantees on the diversity of the generated
program variants.

Cryptographic algorithms aim at securing sensitive information and communi-
cation in the presence of adversarial behavior. The design of popular cryptographic
algorithms, such as RSA, is based on the assumption that breaking these algo-
rithms is computationally too hard to be practical. However, with the advent of
side-channel attacks, adversaries are able to break cryptographic algorithms using
knowledge about the algorithm’s implementation and side effects during the execu-
tion of the algorithm. In particular, these attacks exploit side-channel information,
such as the execution time or the power consumption, during the execution of the
victim algorithm to extract information about the processed data. These powerful
attacks have challenged the security of popular cryptographic algorithms, such as
AES, DES, and RSA [10, 11, 12]. Typical mitigations against side-channel attacks
include software mitigations that aim at hiding secret information from side-channel
traces. However, these mitigations may lead to high performance overhead. Hence,
reducing this overhead is essential, not least for resource-constrained devices.

An attacker attempting to exploit a victim system may use either or both of
these attacks; therefore, protecting a system often requires applying multiple mit-
igations. However, these mitigations may affect or invalidate each other; thus,
combining such mitigations while preserving their security properties is highly im-
portant. At the same time, the sequential application of software mitigations may
introduce prohibively high performance overhead; hence, controlling this overhead
is essential, especially for resource-constrained devices.

This dissertation investigates the generation of highly optimized and secure
binary code targeting code-reuse and side-channel attacks in embedded systems.
Compiler approaches allow high control over the program structure and the gener-
ated binary code, which enables effective vulnerability mitigation. In addition, typ-
ically, compilers generate optimized code; thus, embedding security properties in a
compiler-base approach allows the generation of highly optimized code [4]. This dis-
sertation presents Secure-by-Construction Optimization (SecOpt), a performance-
aware, secure compilation method, which uses Constraint Programming (CP), a
combinatorial optimization method, to generate highly optimized and secure code.
Compiler optimization has effectively used CP to describe the program properties,
code transformations, and the target processor cost model [5]. SecOpt extends
a constraint-based compiler approach to generate code that hinders cyberattacks
while it generates highly efficient code at the cost of compilation-time overhead.



1.1. THESIS STATEMENT 3

Code verification allows verifying security properties in the generated binary code
to increase trust in the compiler result. The ultimate goal of SecOpt is to design a
versatile compiler-based toolbox that protects binary code against code-reuse and
side-channel attacks while reducing the introduced resource overhead.

1.1 Thesis Statement

This dissertation proposes a constraint programming approach to integrate compiler
transformations and security constraints to generate optimized and secure code.
The thesis statement of this dissertation is the following:

Combinatorial binary-code hardening is effective, composable, and
highly optimizing.

The proposed approach is effective as it achieves satisfactory mitigation effec-
tiveness against different attacks, including code-reuse attacks, power side-channel
attacks, and timing side-channel attacks. When the attacker has multiple methods
to hijack a system, this approach may compose one solution that satisfies mit-
igations against all these threats. This property is valuable when two different
mitigation approaches conflict, i.e. the transformations of one mitigation may in-
validate the other mitigation(s). SecOpt is highly optimizing because it achieves
software diversification with zero performance overhead and generates optimized
code against side-channel attacks with reduced overhead compared to related ap-
proaches. These properties of SecOpt take advantage of the characteristics of CP,
which allows control over both the modeling and solving.

1.2 Research Questions

This dissertation poses four research questions that investigate the feasibility and
effectiveness of SecOpt at generating highly optimized secure programs, providing
a formal and composable framework.

RQ1: How feasible and effective is performance-aware
constrained-based software diversification against code-reuse
attacks?

Automatic software diversity has been effective against code-reuse attacks. Fine-
grained diversification approaches perform transformations at the binary or the
compiler level to generate functionally equivalent program variants. However, most
of these approaches 1) focus on x86 systems, 2) do not control how different the
generated variants are, and/or 3) do not control the performance overhead of the
generated program variants. With this question, we want to investigate the fea-
sibility of a constraint-based diversification approach and its effectiveness against



4 CHAPTER 1. INTRODUCTION

code-reuse attacks. In addition, we investigate how to generate highly optimized
and diverse solutions efficiently.

RQ2: How feasible is secure constraint-based optimization of
cryptographic implementations?

Software transformations of cryptographic implementations that mitigate timing
and power side-channel attacks may introduce significant performance overhead [13,
14, 15]. This dissertation considers two software mitigation approaches against
timing and power side channels, respectively and investigates the feasibility of a
constraint-based approach to generate optimized and secure code against these
attacks. In addition, this question investigates the adequacy of a constraint-based
approach to provide guarantees about the program security.

RQ3: How feasible and effective is a combined mitigation against
code-reuse attacks and side-channel attacks?

Protecting a system against cyberattacks often requires combining multiple mit-
igations against different attack classes. In some cases, diverse mitigations may
conflict with each other. In particular, the sequential application of different se-
curity mitigations may invalidate one another. This dissertation investigates the
feasibility of a constraint-based approach to combine multiple mitigations and the
security effect of combining fine-grained software diversification against code-reuse
attacks with mitigations against side-channel attacks.

RQ4: How feasible is code verification of binary code against
timing side channels?

The code that SecOpt generates against timing attacks needs to preserve timing
properties. To improve our trust in SecOpt, we verify the intended timing prop-
erties in the generated code using external tools. Furthermore, this dissertation
investigates the feasibility of a symbolic execution approach for verifying timing
mitigations in WebAssembly. WebAssembly is a recent low-level language with
multiple advantages, including security features, portability, and efficiency [16].
However, WebAssembly is vulnerable to timing side-channel attacks. This question
aims to investigate the feasibility of code verification to preserve timing properties
in real-world binary code.

1.3 Contributions

The contributions of this thesis are as follows:

C1: design and evaluate a local search algorithm for generating diverse solutions
in CP;



1.4. SUSTAINABILITY AND ETHICS 5

C2: propose a software diversification method that allows explicit control over the
execution-time overhead of the generated program variants and evaluate its
effectiveness against code-reuse attacks;

C3: design and evaluate a structural decomposition algorithm to diversify
medium-sized functions;

C4: model the automatic generation of optimized code that is secure against power
side-channel attacks;

C5: provide a proof that the constraint model against power side-channel attacks
protects against the leakage model;

C6: model the automatic generation of optimized code that is secure against tim-
ing side-channel attacks;

C7: model and evaluate a composable approach to code optimization that is secure
against code-reuse attacks and side-channel attacks;

C8: design and evaluate a method to verify the constant-time property in We-
bAssembly programs.

1.4 Sustainability and Ethics

Sustainability goals and ethics considerations are an essential part of this thesis
that aims at extending the state-of-the-art in secure code generation.

Sustainability: Cybersecurity is essential for preventing disinformation, fraud,
and breach of sensitive data, while it promotes economic growth and political in-
dependence. This thesis concerns the development of software mitigations against
cyberattacks that may result in the leakage of sensitive data or hijacking a possibly
critical system, such as medical equipment, energy production, medical records,
and more. In addition, the energy consumption of data centers accounts for around
1% to 1.5% of global energy use. Often, this data requires security measures to
protect against variable attacker models, which typically increase the performance
overhead, and thus, the total energy consumption for achieving the same results.
We believe that our approach is a step towards improved performance consumption
for software and, hence, reduced energy consumption.

Ethics: This thesis deals with data that consists of programs that are not subject
to ethical considerations. The reproducibility of the research conducted during this
thesis has been an important goal that we deal with by providing all artifacts for
this work online.



6 CHAPTER 1. INTRODUCTION

1.5 Publications

This thesis includes the following publications:

P1: R. M. Tsoupidi, R. Castañeda Lozano, and B. Baudry, “Constraint-Based
Software Diversification for Efficient Mitigation of Code-Reuse Attacks,” in
International Conference on Principles and Practice of Constraint Program-
ming, 2020, pp. 791–808

Contributions: The author of this thesis contributed with design discus-
sions, design decisions, implementation and evaluation of the method, paper
writing, and presentation of the paper.

P2: R. M. Tsoupidi, R. Castañeda Lozano, and B. Baudry, “Constraint-based
diversification of JOP gadgets,” Journal of Artificial Intelligence Research,
vol. 72, pp. 1471–1505, 2021

Contributions: The author of this thesis contributed with design dis-
cussions, algorithm design decisions, implementation and evaluation of the
method, and paper writing.

P3: R. M. Tsoupidi, M. Balliu, and B. Baudry, “Vivienne: Relational Verification
of Cryptographic Implementations in WebAssembly,” in 2021 IEEE Secure
Development Conference (SecDev), 2021, pp. 94–102

Contributions: The author of this thesis contributed with design discus-
sions, algorithm design decisions, solver optimization decisions, invariant de-
sign, implementation and evaluation of all methods, paper writing, and pre-
sentation of the paper.

P4: R. M. Tsoupidi, R. C. Lozano, E. Troubitsyna, and P. Papadimitratos,
“Securing optimized code against power side channels,” arXiv preprint
arXiv:2207.02614, 2022, to appear in CSF’23

Contributions: The author of this thesis contributed with design discus-
sions, algorithm design decisions, search algorithms, proof design and imple-
mentation, implementation and evaluation of all methods, paper writing, and
future presentation of the paper.

P5: R. M. Tsoupidi, E. Troubitsyna, and P. Papadimitratos, “Thwarting code-
reuse and side-channel attacks in embedded systems,” arXiv preprint
arXiv:2304.13458, 2023, under submission

Contributions: The author of this thesis contributed with timing side-
channel modeling, search algorithms, implementation and evaluation of all
methods, paper writing, and potential presentation of the paper.

Table 1.1 shows the research questions for each paper, and Table 1.2 shows the
contributions of each paper.



1.6. OUTLINE 7

publication R1 R2 R3 R4
A
B
C
D
E

Table 1.1: Research questions addressed per publication

publication C1 C2 C3 C4 C5 C6 C7 C8
A
B
C
D
E

Table 1.2: Contributions per publication

1.6 Outline

Chapter 2 discusses the background of this dissertation, including the cyberattacks
that this dissertation considers, the combinatorial approach of this work, and the
underlying constraint-based compiler backend. Chapter 3 describes the approach
and methodology of this dissertation, while Chapter 4 discusses the related work.
Chapter 5 presents the summary of the publications that this dissertation includes,
and finally, Chapter 6 concludes this dissertation and discusses potential future-
work directions.





Chapter 2

Background

This chapter presents the background of this dissertation. The background includes
a description of the cyberattacks and mitigations of these cyberattacks that we
consider in this dissertation (Section 2.1), a summary of CP, the primary solving
method in this dissertation (Section 2.2), and finally, a description of the modeling
of the combinatorial compiler that significant part of this dissertation lies upon
(Section 2.3).

2.1 Cybersecurity Threats and Mitigations

Cybersecurity is an increasingly important scientific field due to the emergence of
IoT devices and the digitalization of services, including transmission and storage
sensitive medical information, safety-critical infrastructure, and financial transac-
tions. Cyberattacks constitute a severe threat in modern societies because these
attacks lead to economic loss, negative reputation effects, and negative social im-
pact [22]. Many of these attacks are due to vulnerabilities in software or unintended
behavior in the hardware [23].

An important stage in the modern software development chain is compilation.
Typically, compilers translate code from a high-level language to a low-level lan-
guage, such as the binary code that the processor executes. Compilers aim at
generating code that is semantically equivalent to the source code, however, there
is no requirement to preserve security properties. On the contrary, compilers have
in some cases been found responsible for removing security software countermea-
sures or violating source-code security properties [3]. The reason for these security
violations is that compiler research has focused on improving performance and/or
code size, whereas security is a concept that has become relevant in recent years
due to the increasing use of electronic transactions and IoT devices.

Code-reuse and side-channel attacks are two types of powerful attacks where
compilers play an essential role. Code-reuse attacks depend on code snippets
that appear in the compiler-generated code and, thus, code generation is a key

9



10 CHAPTER 2. BACKGROUND

1 move $a0 , $zero # Move zero to $a0
2 lw $ra , 0x24($sp) # Load address for next gadget

3 jr $ra # Jump to address at $sp + 4*0x24

4 addiu $sp , $sp , 0x28 # Delay slot: increment $sp

Figure 2.1: Code-reuse gadget in Mips libc

software-development stage to affect these attacks. Similarly, compilers may affect
mitigations against side-channel attacks [24, 25, 26], and thus, compilation is the
appropriate stage for security property preservation.

Code-Reuse Attacks

Code-reuse attacks depend on memory-corruption vulnerabilities in the program
memory space, such as a buffer overflow. These vulnerabilities allow a malicious
actor to insert data into the target program memory. To prevent direct attacker-
introduced payload execution, executable-space protection prohibits the execution
of code in writable memory, e.g., the stack.

Code-reuse attacks, such as return-to-libc, and advanced attacks, such as
Return-Oriented Programming (ROP) [6, 27] and Jump-Oriented Program-
ming (JOP) [28, 29, 30], may bypass executable-space protection defenses. The
attackers use code snippets in known locations in the program memory of the target
system to design the attack. These code snippets, so-called gadgets, typically end
with a control-flow instruction, such as a return, a jump, or a call instruction. The
last control-flow instruction allows the attacker to build a gadget chain by trans-
ferring the control from one gadget to the next. The gadgets that are available in
the victim program memory, such as in dynamically-loaded libraries, may provide
high expressibility to allow the attacker to hijack the system [6].

Figure 2.1 shows a code-reuse gadget found in the libc library of a Mips32
Debian Linux system. At line 1, the gadget moves value zero to register $a0. Then,
it loads the address of the next gadget to the return-address register $ra. The
attacker has ensured that this address resides to address 0x24($sp), where $sp is
the stack pointer. At line 3, the code moves to the new gadget, jr $ra, and the last
instruction is a delay slot1. The delay slot increases and stack pointer $sp by 0x28.
This last step is important for the attacker to move the attack payload forward to
enable moving to the data of the next gadget. Such code sequence appear at the
return points of functions and are very common in compiler-generated code.

Classic code-reuse attacks assume that the attacker has access to binary code
identical to the victim code and designs a payload offline before attacking the victim
system. More advanced attacks allow reading the memory during the attack. In

1Delay slots in Mips follow a branch instruction but execute before them and their purpose is
to reduce the branch target estimation delay.



2.1. CYBERSECURITY THREATS AND MITIGATIONS 11

0x8014: move $a0 , $zero
0x8018: lw $ra , 0x24($sp)
0x801c: jr $ra
0x8020: addiu $sp , $sp , 0x28

(a) Variant 1

0x8010: lw $t9 , 0x24($sp)
0x8014: move $a0 , $zero
0x8018: nop

0x801c: jr $t9
0x8020: addiu $sp , $sp , 0x28

(b) Variant 2

Figure 2.2: Two diverse implementations of the gadget in Figure 2.1 in Mips.

particular, JIT-ROP [31] dynamically reads the program memory, selects appropri-
ate gadgets, and performs the attack. Similarly, Blind ROP (BROP) [32] achieves
reading the memory using repeated steps, however, BROP may lead to system
crashes. A different approach by Seibert et al. [33] achieves identifying the location
of code snippets in the code using timing side-channel information. In particular,
when the victim binary is not identical with the original binary, an attacker may
use timing side-channel information to decipher the binary’s diversification. The
attacker records the execution time of different parts of the code to recognize how
the code has been diversified. The advantage of this approach is that it does not
lead to system crashes, however, it may take a long time, up to a week, to achieve
the attack.

Code-Reuse Attack Mitigations

There are two main mitigation approaches against code-reuse attacks, Control-Flow
Integrity (CFI) [34] and automatic software diversification [7]. The main idea of
CFI is to ensure that the program executes legitimate control flow [35]. In this
way, CFI restricts code-reuse attacks to only transfer control to legitimate control-
flow targets, which reduces the power of these attacks2. The main disadvantage
of CFI is that it often leads to high execution-time overhead [34]. An alternative
mitigation against code-reuse attacks is automatic software diversification, which
introduces uncertainty to the implementation of the code and, in this way, hinders
a code-reuse attack that depends on the addresses of known gadgets. More gener-
ally, software diversification is a method to improve the fault tolerance of software
systems [36, 37] and security [38, 39] in computing systems. Software diversification
investigates code diversity at the level of algorithm implementation, library imple-
mentation [40, 41], memory layout (Adress Space Layout Randomization (ASLR)),
and binary-level implementation [8, 9]. This dissertation concerns automatic fine-
grained software diversification that generates program variants derived from the
same source code but with different binary implementations.

Many code-reuse attacks depend on gadgets, which are code sequences that ex-
ist in the program memory. Typically, classic code-reuse attacks depend on the

2Other approaches, such as stack canaries, have similar effect on ROP attacks.



12 CHAPTER 2. BACKGROUND

1 uint8 check_bit(uint8 pub , uint8 key) {

2 uint8 t = 0;

3 if (pub == key)

4 t = foo();

5 return t;

6 }

Figure 2.3: Program with secret-dependent branching in C

exact addresses of the gadgets in memory. Software diversification as a mitigation
against code-reuse attacks changes the address of these gadgets and/or their im-
plementation, aiming to reduce the probability of success of an attack. Figure 2.2
shows two versions of the gadget in Figure 2.1, where Figure 2.2a corresponds to
the original gadget in Figure 2.1. The gadget in Figure 2.2b differs from the gad-
get in Figure 2.2a in three points, 1) there is an additional No-Operation (NOP)
instruction at address 0x8018, 2) instructions move and lw are swapped, and 3) the
return address is loaded at register $t9 instead of register $ra. Assuming that the
attacker has used the gadget in Figure 2.2a to generate their payload, this pay-
load may fail against a user using the code in Figure 2.2b. More specifically, an
attacker that uses the gadget in Figure 2.2a will instruct the previous gadget to
jump to address 0x8014, namely the beginning of the gadget. However, at address
0x8014, the diversified gadget (Figure 2.2b) moves the value of zero to register a0,
but it does not move the attacker-controlled address to $t9. Hence, the processor
will not transfer the control flow to the next gadget to finalize the attack. This
scenario leads, with a high probability, to attack failure. Additional diversification
approaches like function shuffling or basic-block shuffling may increase the entropy
of this diversified example.

Side-Channel Attacks and Mitigations

Side-channel attacks use side-channel information, such as the execution time or the
power consumption of a program, to extract information about valuable program
values. Side-channel attacks constitute a severe threat to cryptographic algorithms.
The security of cryptographic algorithms often depends on values that should re-
main secret, such as symmetric or asymmetric keys. Using side-channel informa-
tion, an attacker may extract information about these keys to break cryptographic
security. Side-channel attacks have been successful against popular cryptographic
algorithms, such as DES, AES, and RSA [10, 11, 12].

Timing Side-Channel Attacks

Timing side-channel attacks [12] measure the execution time of the program to
extract information about program values. The attacker may perform the attack



2.1. CYBERSECURITY THREATS AND MITIGATIONS 13

1 uint8 sbox_get(uint8 *pub , uint8 key) {

2 return pub[key];

3 }

Figure 2.4: Program with secret-dependent memory operation

remotely via the network [42] or locally when the victim and the attacker share the
same hardware [43]. Timing attacks may extract information about a secret value
when this value affects the program execution.

In many implementations of cryptographic algorithms, the execution time may
depend on the value of the encryption/decryption key. For example, consider func-
tion check_bit in Figure 2.3. Assume that the value of pub is known to the attacker,
whereas key contains secret information. If these two values are equal, the program
executes function foo(), whereas otherwise, the check_bit function returns imme-
diately. Hence, if the two values are equal, then the execution of function check_bit

takes longer time than otherwise. Therefore, an attacker that measures the execu-
tion of this function may distinguish the difference between the execution time, e.g.
by controlling the value of pub and, subsequently, extract one bit of information
about the value of key.

Another timing vulnerability that appears in cryptographic implementations is
secret-dependent memory operations. Figure 2.4 shows function sbox_get, which
takes two inputs, a public array, pub, and a secret value, key. The function returns
the element of pub at index key. Here, the source of the leakage is the cache
hierarchy, which aims at providing recently-accessed address regions faster. In
particular, cache memories have low data access latency and store recently accessed
memory blocks for faster access in future memory requests by the processor. The
cache stores these blocks based on their address in memory, which depends on
the array index, key, in our example. Upon a memory request in the cache, if the
relevant cache line is full, the cache replaces old data with the new data. An attacker
may take advantage of the cache hierarchy to extract information about secret
values. For example, an attacker may fill a shared cache with their own data before
the victim runs their code. Subsequently, the attacker measures the access time of
their data to infer the memory access patterns of the victim (Prime+Probe) [44].

Other sources of timing vulnerabilities include variable-latency instructions with
secret operands, such as division and multiplication instructions in some architec-
tures. In general, when the execution time depends on secret values that should
remain unrevealed, execution time may leak information about these secret values.

Timing Side-Channel Mitigations

In the research literature, there are diverse mitigation approaches against tim-
ing side-channel attacks. This dissertation concerns two mitigation approaches:
constant-time programming and constant-resource programming.



14 CHAPTER 2. BACKGROUND

1 uint8 check_bit(uint8 pub , uint8 key) {

2 uint8 t; sint8 m;

3 t = foo();

4 m = -(pub == key);

5 return (t&m | 0&∼m);
6 }

Figure 2.5: Constant-Time Program from Listing 2.3 in C

Constant-Time Programming: The constant-time programming discipline is
a set of programming guidelines that aim at removing secret-dependent timing vari-
ations. The constant-time discipline converts secret-dependent branch instructions
and memory accesses to constant-time equivalent. In addition, some approaches
consider secret-dependent variable-latency instructions, such as division and mul-
tiplication, when their operands are secret values.

Figure 2.5 shows a constant-time version of function check_bit in Figure 2.3.
This implementation starts by executing function foo() (line 3), regardless of the
result of the comparison between the two input values. Then, the code stores the
negation of the result of the comparison between the two input values in the signed
variable m (line 4). That is, if the result of the comparison is true or 000000001

in binary encoding, then variable m is minus one or 11111111 in binary encoding.
Similarly, if the result of the comparison is false or equal to zero, then minus zero
is zero, which leads to 00000000 in binary encoding. The return result (line 5) is
either equal to t, when the value of m is 11111111, or 0, when m is 00000000. Hence,
in the constant-time reimplementation of Figure 2.3, the execution time does not
depend on the secret value, instead, it is constant.

Constant-time implementations may contain complex logic-operation code that
is often difficult to write, read, and debug. Hence, verification approaches are im-
portant for guaranteeing the correctness of these implementations. Furthermore,
compilers may break such implementations, for example, by converting logical op-
erations back to a secret-dependent branch [24].

Constant-Resource Policy: The constant-time programming discipline often
leads to complex code. Another alternative mitigation approach against timing side-
channel attacks is the constant-resource policy [45]. In contrast to the constant-time
policy, the constant-resource policy does not require the absence of secret-dependent
branches and memory operations, instead it requires that the program uses the same
resources for different secret values [46]. In particular, the constant-resource policy
allows secret-dependent branches when both branch directions lead to the same
execution time.

Figure 2.6 shows a constant-resource version of function check_bit in Figure 2.3.
At line 3, the implementation compares the two input values. If the input values
are equal, the implementation calls function foo() and stores the result in variable



2.1. CYBERSECURITY THREATS AND MITIGATIONS 15

1 uint8 check_bit(uint8 pub , uint8 key) {

2 uint8 t = 0, _t;

3 if (pub == key)

4 t = foo();

5 else

6 _t = foo ();

7 return t;

8 }

Figure 2.6: Balanced Constant-Resource Program from Listing 2.3 in C

t (line 4). If the two input variables are not equal, the code calls function foo()

and stores its result in an unused variable _t (line 6). The return result of this
function is t, which is either 0 or the return value of function foo(). The idea of
this transformation is that both branch directions take the same execution time3.

This implementation is easier to read and more similar to the original imple-
mentation than the constant-time equivalent in Figure 2.5. However, there are two
main compilation challenges of such implementations. First, dead-code elimina-
tion passes may remove the functionally unused call to function foo() in the else

branch. Second, timing variations between the two branches may depend on dif-
ferent microarchitectural features, such as instruction latencies, branch prediction,
and memory accesses. The latter may lead to a longer execution time for either of
the branches. These challenges make compiler-based approaches that consider an
accurate cost model valuable to guarantee that different execution paths use the
same resources.

Power Side-Channel Attacks

Power side-channel attacks measure the power consumption during the execution of
a program to exploit the victim system or extract security-critical information. For
power side-channel attacks, any value transitions in hardware, such as hardware
registers, the memory, or the memory bus, may reveal information about these
values. When a program manipulates secret information, the attacker may disclose
this information by recording the power consumption during the program execution.
Figure 2.7 shows function xor, which takes two values as input, pub, which is known
and/or controlled by the attacker and key, which is a secret value unknown to the
attacker. The function returns the exclusive-OR operation of the two input values.
These operations may affect the device’s power consumption because the processor
manipulates the secret value with a public value in the hardware.

A typical leakage model for power attacks is the Hamming model. A data word
consists of m bits, each of which takes a value from [0, 1]. We can write a data

3In general, the actual timing of each of the branches depends also on microarchitectural
features including, branch decisions, instruction latencies, and memory accesses



16 CHAPTER 2. BACKGROUND

1 uint32 xor(uint32 pub , uint32 key) {

2 uint32 t = pub ^ key;

3 return t;

4 }

Figure 2.7: Exclusive-OR implementation in C

word in form D =
∑m−1

i=0 di2
i, where di is the value of the binary encoding at the

ith position. The Hamming weight of a data word corresponds to the number of
bits that are one, i.e. H(D) =

∑m−1
i=0 di. Many works assume that the data leakage

through a power side channel depends on the number of bits switching from one to
zero or vice versa at a given time. Hence, the data leakage at the transition of one
hardware variable from D1 to D2 equals H(D1⊕D2), where ⊕ is the exclusive-OR
operator. The transition between these values happens at distinct time points, for
example, at the positive or negative clock edge in an electronic device [11]. The data
leakage may happen at different parts of the processor, for example, the memory
bus, the hardware registers, the memory cells, and more [11, 13, 47]. According to
Papagiannopoulos and Veshchikov [13], the easiest to exploit transitional leakages
are hardware-register and memory-bus reuse in an AVR processor.

Power side-channel attacks require the attacker to have local access to the victim
device and have equipment such as an oscilloscope to record the power consump-
tion of the target algorithm at the victim device. Simple Power Analysis (SPA)
is a technique to make direct observations on the power trace of an algorithm in
time. SPA allows the attacker to extract information when indirect branches, value
comparisons, multiplication operations, and exponentiation operations depend on
secret values. SPA allows secret information extraction from multiple DES proce-
dures [10]. Differential Power Analysis (DPA) may distinguish smaller variations in
the power traces that may be too small to distinguish using SPA. DPA records the
power traces of multiple executions of the algorithm. By observing the algorithm’s
output, e.g., the ciphertext, the attacker determines the values of secret data, such
as cryptographic keys [10]. Correlation Power Analysis (CPA) [11] uses the cor-
relation factor between the hamming distance of data and the measured power to
determine the relationship between a guessed value and the actual measurement.
This analysis depends on the Hamming distance model and is as powerful as DPA.
In recent years, power attacks based on deep learning has enabled more powerful
attacks [48].

Power Side-Channel Mitigations

Power side-channel attacks do not affect the program execution and are, therefore,
difficult to detect. One mitigation approach against power side-channel attacks
is software masking. This mitigation aims at randomizing the secret values using



2.1. CYBERSECURITY THREATS AND MITIGATIONS 17

1 uint32 sec_xor(uint32 pub , uint32 key , uint32 mask) {

2 uint32 mk = mask ^ key;

3 uint32 t = mk ^ pub;

4 return (t,mask)

5 }

Figure 2.8: Exclusive-OR with software masking

1 sec_xor(r0 ← pub , r1 ← key , r2 ← mask) {

2 r2 ← r2 ^ r1;

3 r0 ← r2 ^ r0;

4 }

Figure 2.9: Exclusive-OR with software masking in machine code

randomly generated values at every program execution. Software masking aims at
statistically hiding the secret information.

Software masking depends on finite field theory and uses the exclusive-OR op-
eration as the addition operation in GF (2n). Figure 2.8 shows function sec_xor,
which is an implementation of Figure 2.7 using software masking. First, this func-
tion randomizes the secret value key using a newly introduced randomly generated
value mask (line 2). Then, the function uses the randomized key value, mk, to per-
form an exclusive-OR operation with mask (line 3). Finally, function sec_xor returns
the final value and variable mask, which is necessary for retrieving the final result,
namely (mask ^ key ^ pub) ^ mask is equal to key ^ pub.

Although the function implementation in Figure 2.8 randomizes the secret be-
fore interacting with the public value, hardware interactions of values may introduce
secret-dependent power dependencies that appear in the power traces. These inter-
actions occur when hardware registers, the memory bus, or memory cells transition
from one value to another. For example, when a hardware register takes a new value
or when a new value is transferred via the memory bus to the main memory, may
result in a transition. Assuming that transitions from one to zero and from zero
to one result in a similar power consumption change, the hardware’s total power
change depends on the hamming distance between the old value and the new value
at the transition. Figure 2.9 shows an implementation of the masked algorithm in
Figure 2.8 using hardware registers. At line 2, register r2, which holds value mask,
transitions to the value of r2 ^ r1, which holds value key ^ mask. The leakage
from this transition is equal to mask ^ (key ^ mask) or key, which is a secret value.
Hence, this hardware implementation of the masked code leads to transitional leaks
due to register reuse. Similarly, other hardware value transmissions may lead to
transitional leaks of secret values.



18 CHAPTER 2. BACKGROUND

Many transitional leaks depend on compiler-generated machine code, which
determines hardware register assignment and instruction order. Furthermore, some
mitigations against these transitional leaks result in high performance overhead [13].
Therefore, compiler-based approaches may provide opportunities to mitigate these
leakages at a reduced performance overhead.

2.2 Constraint Programming

Constraint Programming (CP) is a method to solve or optimize combinatorial prob-
lems. Compared to other combinatorial solving or optimizing approaches, such as
Boolean Satisfiability (SAT) and linear programming, CP enables larger flexibil-
ity with regard to the domain of variables and the type of constraints. The main
strength of CP is its ability to exploit substructures in combinatorial problems
and has been particularly successful in solving scheduling, resource allocation, and
rectangle packing problems [49].

CP solving usually consists of two parts, 1) modeling, where the user models the
problem as a finite set of variables and constraints, and 2) solving, where the solver
attempts to find solutions, i.e. variable assignments that satisfy all constraints,
to the problem. A Constraint Satisfaction Problem (CSP) models a problem for
which we need to find one or multiple solutions to the problem. Constraint Op-
timization Problems (COPs) include an objective function, and the goal is to find
the solution(s) that optimize(s) this objective function.

Modeling

In CP, a problem is modeled as a finite set of variables, V , that takes values from a
finite set, U , and a set of constraints, C, among the variables in V . Typical variable
domains include integer and Boolean sets. CP solvers provide different constraint
implementations among different variable types.

Problem Modeling: The first step in CP is problem modeling. Modeling is
important because modeling decisions affect the solving time of the problem.

A typical example of a combinatorial problem is the eight-queen problem,
namely the problem of placing eight (chess) queens on a chessboard, so that they
do not threaten each other. There are (at least) two ways to model the eight-queens
problem. One way to model this problem is to use eight variables, qi, one for each
queen. Each variable qi corresponds to the ith column (or row) of the chessboard,
and its value corresponds to the position in the row (or column). The variable
domain, in this case, will be set {1, 2, ..., 8}. A different way to model the eight
queens problem is using one variable, cji for each chessboard position. In this
way, we have 64 variables with domain, {0, 1}. A variable takes value one when a
queen is present on the corresponding cells and zero otherwise. These two different
modeling approaches may lead to different solving times due to different properties



2.2. CONSTRAINT PROGRAMMING 19

of the solver and individual constraint implementations. Therefore, constraint
modeling is an essential step in constraint solving.

Constraints: Constraints are important for modeling a constraint problem. Dif-
ferent constraints affect the efficiency and expressiveness of the solving proce-
dure. Constraints that involve three or more variables are also called global con-
straints [49] and often provide improved efficiency. Global constraints constitute
one of the key strengths of CP.

The first modeling approach of the eight-queens example may use a global con-
straint, all-different(q1, ..., q8) [50], to make sure that all variables differ from
each other; namely, they do not share the same row/column. The all-different

constraint has improved efficiency over a set of disjunctive constraints ∀i, j ∈
{1, ..., 8}.qi 6= qj .

The second modeling approach may use a global linear constraint ∀i ∈ {1, ..., 8}.∑
j∈{1,...,8} c

j
i = 1 to ensure that every row accommodates only one queen. Note

that this constraint is an efficient way to model that one and only one queen appears

in a row or ∀i ∈ {1, ..., 8}.∃j ∈ {1, ..., 8}.
(
cji = 1 ∧ ∀k ∈ {1, ..., 8} − {j}.cki = 0

)
.

Solutions: The solutions to the problem are the variable assignments that satisfy
all constraints.

Example 1 Give a CSP P = 〈V,U,C〉, where V = {x, y, z}, U = {1, 2, 3, 4}, and
C = {x > 1, x + y = z}, the solutions to the problem are: sol(P ) = {〈2, 1, 3〉,
〈2, 2, 4〉, 〈3, 1, 4〉}

In some problems, all solutions are not equivalent, and the application requires
a solution that, e.g., maximizes or minimizes an objective function, O. In this case,
the goal of the solver is to find the optimal solution to the problem.

Example 2 CSP P may be extended to a COP, P ′ = 〈V,U,C,O〉, with an opti-
mization function O = maximize x. Then, the solution that we are looking for is
sol(P ′) = {〈3, 1, 4〉}.

For many problems, it is sufficient to find one (optimal or not) solution, whereas,
for other problems, it is essential to find a set of diverse solutions [51]. Example
applications include automatic test generation [52], finding alternative optimal so-
lutions in process plant layout optimization [51], and solving complex constraints
by generating multiple solutions and then verifying the suitability using more exact
methods [53]. Defining the meaning of the difference between solutions is essential
in this context. To achieve this, we define function δ that takes two solutions and
returns the difference between these solutions.

Example 3 For problem P , we may define the function δ(s, s′) = |sx− s′x|+ |sy −
s′y|+|sz−s′z|. Then, the distance between all three pairs of solutions is δ(si, sj) = 2,
i, j ∈ {1, 2, 3}.



20 CHAPTER 2. BACKGROUND

Solving

Given a CSP or a COP, the solving process aims at finding feasible solutions.
Typically, solving in CP is an iterative procedure and consists of two main steps,
1) propagation, which reduces the variable domains based on the constraints, and
2) search, which sets the value of one variable from its domain in each step.

Propagation: Constraint propagation is the procedure that reduces the variable
domains based on the problem constraints. Often the propagation process considers
one constraint at a time and is repeated until reaching a fixpoint.

Example 4 CSP P = 〈V,U,C〉, where V = {x, y, z}, U = {1, 2, 3, 4}, and C =
{x > 1, x+y = z}, has two constraints C1 = x > 1 and C2 = x+y = z. Propagation
of C1 results in x ∈ {2, 3, 4}, y ∈ {1, 2, 3, 4}, z ∈ {1, 2, 3, 4}. Then, propagation of
C2 results in x ∈ {2, 3}, y ∈ {1, 2}, z ∈ {3, 4}, which is a fixpoint.

Search: Propagation is usually not sufficient to solve a problem. After propa-
gation has reached a fixpoint, the solver applies search to decompose the problem
into simpler subproblems. In particular, the solver selects one variable and splits
its domain, often in two parts.

Example 5 In our problem, P , search may split the previous fixpoint (x ∈
{2, 3}, y ∈ {1, 2}, z ∈ {3, 4}) into two subproblems, one for x = 2 and one for
x = 3.

Subsequently, the solver applies propagation to each subproblem to find solu-
tions and repeats the search step until it finds one solution, all solutions, or a
specific solution.

Example 6 For the first branch, x = 2, propagation returns fixpoint x ∈ {2}, y ∈
{1, 2}, z ∈ {3, 4}, which is not a single solution. Thus, we need to apply search
again for y = 1 and y = 2, which gives two solutions x ∈ {2}, y ∈ {1}, z ∈ {3} and
x ∈ {2}, y ∈ {2}, z ∈ {4}, respectively.

For the second branch, x = 3, we get directly one solution after propagation:
x ∈ {3}, y ∈ {1}, z ∈ {4}.

Deciding which variable to branch on and how to split the value space of the
selected variable at an invocation of search may affect the efficiency of the solving
procedure and is an important design decision. These branching schemes are called
search heuristics. Typical search heuristics include smaller value first, variable with
the smallest value set first, and more.

Branch-and-bound search is an approach to solving COP problems. First, the
algorithm finds one solution. Then, the algorithm adds a new constraint to the
problem that requires the following solution to be better than the current one. The
solver continues until there are no better solutions.



2.3. COMPILER BACKEND 21

Example 7 For P ′ that we used before, with O = maximize x, we have the first
propagation fixpoint as: x ∈ {2, 3}, y ∈ {1, 2}, z ∈ {3, 4}. Assume we first find
solution 〈2, 1, 3〉. Then, branch-and-bound adds constraint x > 2, which leads to
the optimal solution, 〈3, 1, 4〉.

Apart from the classic search heuristics, there are other search procedures
called metaheuristics [54]. In this dissertation, we use Large Neighborhood Search
(LNS) [55], a form of local search that is consistent with CP. LNS is often used for
solving optimization problems. After finding the first solution, LNS uses part of
this solution to find a better solution. To do that, LNS destroys parts of the solu-
tion (assignments to variables) and then tries to find other solutions that improve
the objective function.

Example 8 In our example, P ′, with O = maximize x, we have the first propa-
gation fixpoint as: x ∈ {2, 3}, y ∈ {1, 2}, z ∈ {3, 4}. Assume we first find solution
〈2, 1, 3〉. Then, LNS destroys variables x and z, and adds an optimization con-
straint x > 2 and after propagation we have: x ∈ {3}, y ∈ {1}, z ∈ {4}, which is
the optimal solution.

2.3 Compiler Backend

Compilers are essential components in the software development chain. Typical
general-purpose compilers take as input a program written in a high-level language
and translate it to a low-level language or machine code. Conventional compilers,
such as LLVM [56] and GCC [57], consist of a series of analysis and transforma-
tion passes that aim to improve the code performance, reduce the code’s size, or
minimize the energy consumption.

Compiler front- and middle-end passes perform high-level transformations such
as loop unrolling, dead-code elimination, and expression rewriting, whereas com-
piler back-end passes are responsible for target-processor-related transformations.
At the compiler backend, there are three main transformations, 1) instruction se-
lection, where machine instructions replace abstract instructions, 2) instruction
scheduling, which decides the order of the instructions in the final code, and 3)
register allocation, which assigns virtual registers to hardware registers and mem-
ory. These transformations are very important for the quality of the generated code
in the hardware and are increasingly important in architectures that require sig-
nificant effort from the compiler, such as static multiple-issue architectures. Such
architectures typically require the compiler to schedule multiple instructions to dif-
ferent processing units statically. However, the compiler backend transformations
are known to be combinatorial problems, where finding the optimal hardware code
implementation may take exponential time. Instead, many compilers use heuristics
that find efficient but not optimal solutions.



22 CHAPTER 2. BACKGROUND

Combinatorial Compiler Backend

For compiler-demanding architectures or performance-critical functions, there are
combinatorial compiler-backend approaches to find optimal low-level implementa-
tions [58, 59]. These approaches use an abstract processor model and represent the
quality of each solution in the form of a cost function. Subsequently, combinato-
rial compiler approaches generate code that optimizes this objective function. In
combinatorial optimization, an optimal solution corresponds to a solution that max-
imizes or minimizes the objective function. Combinatorial models do not exclude
the presence of multiple optimal solutions.

Unison, a recent work, has shown the benefits of unifying multiple compiler
passes to generate highly optimized code. In particular, instruction scheduling and
register allocation are strongly interdependent problems, and thus, modeling both
problems together improves the quality of the generated code [5]. Unison is the
first practical combinatorial compiler-backend approach, and SecOpt is based on
Unison. In particular, SecOpt extends Unison to consider security properties.

Modeling: Typically, compiler-backend passes process the program in Static Sin-
gle Assignment (SSA) form, where every variable is assigned a value only once. A
combinatorial compiler models a program as a set of basic blocks B, i.e. pieces of
code with no branches apart from the exit of the block. Each basic block con-
tains a number of optional operations, o ∈ Operations, that may be active or not.
An active operation appears in the generated code, while an inactive operation is
omitted. These optional operations enable transformations that are necessary for
register allocation and instruction scheduling. Inso denotes the set of hardware
instructions that implement operation o. Each operation includes a number of
operands p ∈ Operands, each of which may be implemented by different, equally-
valued temporaries, t ∈ Temps. Temporaries represent an infinite number of virtual
registers, which the solver assigns to a hardware register or a memory location in
the stack. Alternatively, a temporary may not be alive.

Fig. 2.10 shows a simplified version of the constraint-based compiler backend
model for Fig. 2.7. Temporaries t0 and t1 contain the input arguments pub and
key, respectively. Copy operations (o2, o3, o5) enable copying program values
from one register to another (or to the stack) and are critical for flexibility in
register allocation. Operation o2 allows the copy of value pub from t0 to t3. In the
final solution, a copy operation may not be active (shown by the dash in the set of
instructions: [-, copy]). The xor operation (o4) takes two operands, and each of
these operands may use equally valued temporary variables, e.g., t1 and t4.

Objective Function: Combinatorial compiler backends use an objective func-
tion that is based on the target processor characteristics to generate optimized
code. Unison’s objective function optimizes metrics such as code size and execution
time. Unison captures these goals in a generic objective function that sums up the



2.3. COMPILER BACKEND 23

o1: in [t0 ← pub , t1 ← key]

o2: t2 ← [-, copy] t0

o3: t3 ← [-, copy] t1

o4: t4 ← xor [t1 ,t3] [t0 ,t2]

o5: t5 ← [-, copy] t5

o6: out [t6 ← [t4 ,t5]]

Figure 2.10: Exclusive-OR operation

weighted cost of each basic block:

∑

b∈B
weight(b) · cost(b),

where cost(b) for basic block b is a variable, which estimates the cost of a specific
implementation of the basic block, and weight is a constant value that represents
the contribution of the particular basic block to the total cost. For execution-time
optimization, Unison uses statically extracted basic-block frequencies to estimate
the contribution of each basic block. This cost model is accurate for predictable
hardware architectures. The accuracy of the cost model reduces in the presence
of advance microarchitectural features, such as cache hierarchy, dynamic branch
prediction, and/or out-of-order execution.

Solving: After modeling the problem, the constraint solver attempts to optimize
the problem using scheduling constraints. Unison uses structural decomposition
and advanced search strategies to find the optimal or a good solution efficiently.

Figure 2.11 shows a solution to the program in Figure 2.10. Temporaries t0

and t1 are assigned to hardware registers r0 and r1, respectively, due to the calling
conventions of the target architecture. Temporary t2 is assigned to r2, and the
operation copies the value of r0 to r2. Operation o3 is not active, and thus,
temporary t3 is not live. Temporary t4 is assigned to register r0. Operation o5 is
also not active, and temporary t5 is not live. Finally, temporary t6 is assigned to
the return register r0. This solution is suboptimal, instead, the optimal solution
(see Figure 2.12) deactivates all copy operations.

o1: in [t0:r0 ← pub , t1:r1 ← key]

o2: t2:r2 ← copy t0:r0

o4: t4:r0 ← xor t1:r1 t2:r2

o6: out [t6:r0]

Figure 2.11: Solution of exclusive-OR operation



24 CHAPTER 2. BACKGROUND

o1: in [t0:r0 ← pub , t1:r1 ← key]

o4: t4:r0 ← xor t1:r1 t0:r0

o6: out [t6:r0]

Figure 2.12: Optimal solution of exclusive-OR operation

Transformations: Unison enables the following transformations: 1) hardware
register assignment, 2) register copying, 3) memory spilling, 4) constant remateri-
alization, 5) instruction order, and 6) NOP insertion. Hardware register assignment
maps a hardware register to an operand, register copying copies an operand from
one hardware register to another, and memory spilling allocates a memory slot in
the stack to store an operand. Constant rematerialization allows re-running an
operation, like value loading, instead of copying its result. SecOpt may also al-
ter the instruction order as long as there are no data dependencies or insert NOP
instructions by delaying the issue cycle of an operation.



Chapter 3

Approach and Methodology

3.1 Secure-by-Design Optimization (SecOpt)

This section presents our approach, SecOpt, to generate secure and optimized code
by design. SecOpt implements the following mitigation approaches: 1) fine-grained
software diversification, 2) software masking, and 3) preservation of the constant-
resource property.

Overall, there are three main advantages of SecOpt compared to other ap-
proaches, 1) performance awareness, 2) composability, and 3) a formal definition
of mitigations in the form of constraints. SecOpt inherits an accurate cost model
from Unison [5], which allows control over the performance overhead of the gener-
ated code. In particular, SecOpt may generate optimal or near-optimal code with
a known performance overhead that is based on the cost model. An important
advantage of SecOpt is combining different security mitigations. More specifically,
SecOpt allows combining fine-grained software diversification and software mask-
ing or the constant-resource property to ensure the preservation of the combination
of these properties. Moreover, many conventional compiler-based mitigation ap-
proaches do not provide formal guarantees that the intended properties hold in the
generated code. SecOpt defines the target mitigations in the form of constraints,

factorial.c

Source
Code

• performance control

• composability of secu-
rity mitigations

• formal security model
specification

SecOpt

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

Target
Code

Figure 3.1: High-level view of SecOpt

25



26 CHAPTER 3. APPROACH AND METHODOLOGY

providing guarantees about preserving the intended properties. However, SecOpt’s
security analysis, transformations, and the underlying constraint solvers are not
verified. Verifying these compilation stages is part of future work for Unison [5]
and SecOpt. Code verification uses formal methods to prove software properties
or identify violations of these properties in the code. To ensure that the generated
code against timing side channels satisfies the constant-resource property, we use
external static-analysis tools that output the over- and under-approximation of the
execution time. This verification stage increases our trust in SecOpt’s code gen-
eration. Furthermore, we investigate the constant-time property in WebAssembly
programs using relational symbolic execution, which generalizes symbolic execution
to prove relational properties [60].

Figure 3.1 shows a high-level view of SecOpt. SecOpt takes as input a program
in a high-level language, such as C and C++, and outputs a secure binary-code
implementation. The following sections describe the approach of this dissertation
to protect binary code against code-reuse and side-channel attacks.

Fine-Grained Software Diversification

To enable code diversification, SecOpt uses the transformation search space that
the constraint model allows. In particular, there are multiple solutions to the
constraint model of SecOpt that satisfy the model of the program semantics, the
target processor model, and the low-level transformations. These solutions may be
optimal according to the cost model or suboptimal. To generate diverse solutions,
we need to define the a distance measure, δ, which is a constraint between two
alternative solutions to the problem and measures how different these solutions
are. The problem definition is the following:

Definition 1 Diverse Code Generation: Consider a program p and a set, S, of
program implementations of p, pi ∈ S, which are functionally equivalent (∼) with
the original program, ∀pi ∈ S. p ∼ pi, and each other, ∀pi, pj ∈ S. pi ∼ pj. Fur-
thermore, these program implementations differ from each other based on a distance
function δ, namely: ∀pi, pj ∈ S. δ(pi, pj).

In this definition and later in this section, we define δ as a predicate that is true when
the compared solutions are different and false otherwise. This simplification implies
that our model assumes that two program implementations are different when they
differ by one model variable, which decides the register assignment or the program
schedule. Note that this constraint enforces that the program implementations
are different but does not restrict how different these implementations are. The
actual implementation of our approach allows control over the value of the distance
function to enforce more diversity among the solutions.

To generate highly diverse and optimized code, SecOpt uses a local-search
method, LNS, to navigate in the program’s search space around the optimal solu-
tion. More specifically, SecOpt finds first the optimal solution, yopt, according to



3.1. SECURE-BY-DESIGN OPTIMIZATION (SECOPT) 27

the cost model and then uses LNS to find alternative solutions around this optimal
solution. Initiating the search starting from the optimal solution allows the solver
to locate highly optimized solutions quickly. To control the performance overhead
in the generated variants, we introduce a constraint Copt that restricts the cost
function to have at most g% overhead. At the same time, SecOpt introduces a
distance measure that forces the solutions to differ from each other. In particular,
SecOpt uses an iterative algorithm as follows:

1 y ← yopt; // Start with optimal solution

2 S ← {yopt}; // Add optimal solution to S
3 C′ ← C ∪ {∆(yopt), Copt}; // Add constraints

4 while cont_cond () // Iterate until limit

5 y ← solveLNS(y, C′); // Find next solution

6 S ← S ∪ {y}; // Add new solution to S
7 C′ ← C′ ∪ {∆(y)}; // Add diversity constraint

8 return S // Return set of diverse solutions

At line 1, the algorithm copies the optimal solution to the current solution to
proceed in the iteration. At line 2, the algorithm adds the optimal solution to the
set of solutions, S. Then, at line 3, the algorithm updates the set of constraints with
two constraints. First, distance constraint ∆(yopt) ensures that all future solutions
to the problem y′ will differ from yopt, namely δ(y′, yopt). The second constraint
Copt restricts the solutions to have at most g% performance overhead. Lines 4 to 7
implement the iterative algorithm that proceeds until it reaches a condition, such as
a time limit or the maximum number of variants (line 4). At line 5, the algorithm
takes the previous solution and finds a new solution using LNS. Subsequently,
the algorithm inserts the new solution to set S (line 6), and finally, the algorithm
updates the set of constraints C ′ so that the future solutions are different from the
newly found solution.

Automatic fine-grained software diversification is effective against code-reuse
attacks, however, software diversification approaches against side-channel attacks
lead to a large overhead [14]. Instead, to secure the code against side-channel
attacks, SecOpt preserves software mitigations against side-channel attacks.

Optimizing Side-Channel Mitigations

The underlying constraint-based compiler backend of SecOpt generates highly-
optimized binary code. However, these optimal solutions do not necessarily satisfy
security constraints. Enforcing the generation of secure solutions requires extend-
ing the constraint model to include security constraints. The security properties
that SecOpt implements are software masking against power side channels and the
constant-resource property against timing side channels. The selected mitigations
depend on the underlying compiler-backend’s transformation space and our goal
to generate highly optimized code for resource-constrained devices. In particular,



28 CHAPTER 3. APPROACH AND METHODOLOGY

both software masking and constant-resource programming introduce performance
overhead that a combinatorial approach may reduce [13, 61].

To investigate the feasibility and adequacy of a secure optimizing approach, we
express each mitigation as part of the constraint model of the underlying constraint-
based compiler backend. Definition 2 defines the problem statement for secure code
generation.

Definition 2 Secure Constraint-Based Optimization: Given a constraint problem
P = 〈V,U,C,O〉 that describes a constraint-based compiler backend in CP, we define
constraints Csec, such that problem Psec = 〈V,U,C∪Csec, O〉 satisfies solutions that
mitigate the relevant vulnerabilities.

An important initial step for generating the input data for the security con-
straints, Csec, is security analysis of the code. This analysis takes as input a
security policy that defines which program variables are secret, public, or random
to identify possible vulnerabilities in the program.

Software Masking

SecOpt generates code that protects against transitional leakages due to hardware-
register reuse and memory-bus reuse. Before generating the constraints, SecOpt
performs static analysis to identify possible sources of leaks in the code. In partic-
ular, SecOpt adapts the type-inference algorithm from Wang et al. [25] to extract a
set of program variables and operations that may lead to transitional leakages. This
analysis returns a set of pairs of program variables, RPairs, and a set of pairs of
memory operations, MPairs. Each pair in RPairs leaks secret information when
a hardware register transitions from one value to another. Analogously, a pair of
operations in MPairs leaks secret information if the two operations write to the
memory bus subsequently. The constraint model that preserves software masking
consists of constraints that use RPairs and MPairs to restrict the register al-
location and instruction scheduling of the code generation. In particular, SecOpt
extends the compiler-backend constraint model with the following set of constraints
to protect against register-reuse leakages:

conflict_rassign(RPairs):
∀t1, t2 ∈ RPairs. r(t1) = r(t2) =⇒ ¬subseq(t1, t2)

Constraint conflict_rassign implies that if the temporaries in a pair of program
variables that appears in RPairs, t1, t2, are assigned to the same register, r(t1) =
r(t2), then they should not be assigned subsequently (subseq). Here, constraint
(subseq) considers both directions, namely t1 is assigned to r(t1) immediately
before t2 is assigned to the same register and vice versa.

Figure 3.2 shows one vulnerable (Figure 3.2a) and one secure (Figure 3.2b)
implementation of the code in Figure 2.7. In both figures, the input variables, pub,
key, mask, are stored in registers r0, r1, and r2, respectively. In these figures, we
denote public values as (p), secret values as (s), and random values as (r). The



3.1. SECURE-BY-DESIGN OPTIMIZATION (SECOPT) 29

1 @ r0: pub (p), r1: key (s), r2: mask (r)

2 eors r2 , r1 @ r2:r->r^s

3 eors r0 , r2 @ r0:p->p^s^r

4 bx lr

(a) Insecure

2 eors r1, r2 @ r1:s->s^r

3 eors r0, r1 @ r0:p->s^r^p

4 bx lr

(b) Secure

Figure 3.2: Two program implementations of Figure 2.7 for ARM Cortex M0

1 @ r0: [pub] (p), r1: [key] (s), r2: [mask] (r), r3: [res]

2 ...

3 ldr r1, [r1] @ M:p->s,r1:p->s

4 ldr r2, [r2] @ M:s->r,r2:p->r

5 eors r2, r1 @ r2:r->r^s

6 ldr r0, [r0] @ M:r->p,r0:p->p

7 eors r2, r0 @ r2:r^s->r^s^p

8 str r2, [r3] @ M:p->r^s^p

9 ...

10 ...

11 ...

(a) Insecure (LLVM)

2 ...

3 ldr r2, [r2] @ M:p->m,r2:p->m

4 str r2, [sp] @ M:m->m

5 ldr r2, [r1] @ M:m->k,r2:m->k

6 ldr r1, [sp] @ M:k->m,r1:p->m

7 eors r2, r1 @ r2:k->k^m

8 ldr r0, [r0] @ M:m->p,r0:p->p

9 eors r0, r2 @ r0:k^m->k^m^p

10 str r0, [r3] @ M:p->m^k^p

11 ...

(b) Secure (SecOpt)

Figure 3.3: Two program implementations of the equivalent of Figure 2.7 using
pointers for ARM Cortex M0

comments next to the code denote the value transitions (vold->vnew) in a register,
e.g. r0. The first instruction at line 2, eors, takes two operands r2 and r1, performs
the exclusive-OR, and writes the result in register r2 (two-address instruction). This
operation implies that there is a value transmission in register r2, from value mask to
value mask ^ key, which leads to a hamming-distance leakage (mask ^ key) ^ mask,
which is equal to key(circled in red). This leakage implies that the implementation
leaks information about value key to a power side-channel attacker. The rest of
the code does not lead to any leaks. To generate a secure implementation for the
code in Figure 2.7, SecOpt changes the operand order of the eors instruction, as
shown in Figure 3.2b (line 2). The new implementation leads to a leak of value
mask, which is random.

Similarly, we add the following constraints to protect against memory-bus shar-
ing leakages:

conflict_order(MPairs):
∀o1, o2 ∈MPairs. ¬msubseq(o1, o2)

Constraint conflict_order implies that two operations o1, o2 should not be sched-
uled subsequently (msubseq). Constraint (msubseq) considers both directions,
namely, o1 before o2 and vice versa.

Figure 3.3 shows one vulnerable implementation (Figure 3.3a) generated by



30 CHAPTER 3. APPROACH AND METHODOLOGY

Unison and one secure implementation (Figure 3.2b) generated by SecOpt. This
implementation is a variant of the code in Figure 2.7, where the inputs and the
output are passed as references. In both figures, the addresses of the input variables,
pub, key, mask, are stored in registers r0, r1, and r2, respectively. To mark the value
transitions in memory M and registers, e.g. r0, we denote all public values with p,
including the addresses to the program input variables and the initial value in the
memory bus. At line 3, the implementation loads the secret value from the address
in register r1 to register r1. These instructions lead to two leaks, one register-reuse
transitional leakage in register r1 and one memory-bus transition leakage (circled).
That is, the initial value of r1 is public (address to the value key), and the initial
value in the memory bus is public, which we assume in this work. At line 4, the code
loads the mask, which leads to no leaks. However, at line 5, we have a register-
reuse leakage as in the previous example (Figure 3.2a) because the result of the
exclusive-OR operation is stored at the same register as value mask, which leads to
a leak related to the value of key (circled). To generate secure code, SecOpt needs
to schedule the memory operations in a specific order ensure that there are no
register-reuse and memory-bus leaks. To do that, SecOpt uses a stack slot to store
the random value mask (line 4), then load the secret value (line 5), and finally load
the random value again (line 6). One of these load operations may be optimized
away, however, Unison does not allow the allocation of unused variables. Forcing
the constraint model to consider dead copies is part of future work.

Constant-Resource Code

SecOpt aims at generating constant-resource code, where secret-dependent branches
are balanced. Although in some cases it is possible to generate constant-resource
code, in other cases, this is not possible because the source code is not balanced
or because front- and middle-end compiler transformations have removed the bal-
ancing (dead) code. To enable mitigation of such code, we perform two program
transformations, 1) add an empty basic block that the solver will fill with NOP
operations and 2) add a basic block that consists of instructions from the basic
block to balance that are deactivated (only in the case of one basic block).

Figure 3.4 demonstrates our transformations for a simple program that returns
one if the input variables key and pub are equal and zero, otherwise. The first
version of the transformed code (Figure 3.4a) adds an empty else block in the
code, while the second version (Figure 3.4b) copies the assignment of mask to one
in the if block to a newly defined else block.

To preserve the constant-resource property, the constraint model enforces all
paths starting from a secret-dependent control-flow operation to have equal latency.
Identifying these paths requires a prior analysis, which first identifies all secret-
dependent control-flow instructions and, subsequently, finds all program paths that
begin from these instructions. This analysis generates a set of lists of paths, where
each list, pathssec, consists of a set of paths that start from the same secret-



3.1. SECURE-BY-DESIGN OPTIMIZATION (SECOPT) 31

1 u32 check_bit(u32 pub , u32 key) {

2 u32 t = 0;

3 if (pub == key)

4 t = 1;

5 else

6 // nop;

7 return t;

8 }

(a) Add Empty Block

2 u32 _t , t = 0;

3 if (pub == key)

4 t = 1;

5 else

6 _t = 1;

7 return t;

8 }

(b) Copy Unbalanced Block

Figure 3.4: Balancing transformations

dependent control-flow instruction. The following constraint enforces the same
execution time for each path in pathssec.

balance_blocks(pathssec):
∀p1, p2 ∈ pathssec.

∑
b∈p1

cost(b) =
∑

b∈p2
cost(b)

Figure 3.5a shows an implementation of the code snippet in Figure 3.4b in as-
sembly code for processor ARM Cortex M0. First, the code (line 3) copies value
zero to register r2 (variable t in Figure 3.4b). At line 4, the implementation com-
pares the two input variables, and if they are not equal (taken branch), the control
flow goes to line 9; otherwise, it continues to line 7. These branches depend on
the secret value in register r1, and hence, the attacker should not distinguish the
execution time regardless of the branch destination. The not taken branch starting
at line 7 copies value #1 to the return register r0 (1 cycle) and then branches to
the exit block .LBBO_3 (3 cycles). If the branch is taken, then there is an additional
overhead of two cycles because the processor needs to calculate the target address
and/or the comparison result. The taken branch starting at line 9 copies the con-
tent of variable r2 to the return register (1 cycle) and assigns value #1 to register r1

(1 cycle), which corresponds to the unused temporary _t in Figure 3.4b. In total,
each branch takes four cycles.

Composability of Security Mitigations

One of the major advantages of constraint-based approaches is composability of
multiple properties in the form of constraints. The constraint-based approach of
SecOpt allows the combination of multiple mitigations against different attacks.
As we show in Publication 4, fine-grained software diversification may conflict with
both constant-resource programming and software masking. SecOpt allows com-
bining multiple mitigations while preserving the properties of these mitigations at
the same time. This work focuses on fine-grained software diversification and soft-
ware masking or constant-resource programming. The problem statement in this
problem is the following:



32 CHAPTER 3. APPROACH AND METHODOLOGY

1 @ r0: pub , r1: key

2 @ BB#0:

3 movs r2, #0

4 cmp r1, r0

5 bne .LBB0_2

6 @ BB#1:

7 movs r0, #1

8 b .LBB0_3

9 .LBB0_2:

10 mov r0, r2

11 movs r1, #1

12 .LBB0_3:

13 bx lr

14 ...

15 ...

(a) Secure variant 1

2 @ BB#0:

3 movs r2 , #0

4 cmp r1 , r0

5 bne .LBB0_2

6 @ BB#1:

7 movs r3 , #1

8 mov r0 , r3

9 b .LBB0_3

10 .LBB0_2:

11 mov r3 , r2

12 mov r0 , r3

13 movs r3 , #1

14 .LBB0_3:

15 bx lr

(b) Secure variant 2

Figure 3.5: Two program implementations that preserve constant-resource prop-
erty for ARM Cortex M0

Definition 3 Secure Constraint-Based Code Diversification: Given problem P =
〈V,U,C,O〉 that describes a constraint-based compiler backend, we add constraints
Csec, that protect against side-channel vulnerabilities, Psec = 〈V,U,C ∪ Csec, O〉.
We aim at generating a set, S, of solutions to the constraint problem, Psec that
are different with each other, ∀pi, pj ∈ S.δ(pi, pj) and are functionally equivalent
∀pi, pj ∈ S.pi ∼ pj.

To achieve these goals, we combine the constraints and methods we discussed in
the previous sections. In particular, the combined approach extends the set of con-
straints with constraints balance_blocks or conflict_rassign and conflict_order

and then, uses LNS to find diverse program solutions. Figure 3.5 shows two program
variants that preserve the constant-resource property based on the copy transfor-
mation in Figure 3.4b. The two variants balance the execution time of the two
paths that split at the branch instruction bne. In both implementations, the first
path consists of basic block one, BB#1, and the second consists of basic block two,
.LBBO_2. The two variants differ with regard to the register assignment, including
copying a result from one register to another (lines 7-8 and 11-12). The two variants
differ in the code size, which may result in different addresses in the binary code.
This relocation, together with different register assignment, e.g. movs r1, #1 (line
11) and movs r3, #1 (line 13), respectively, alter the semantics of possible gadgets
and may break code-reuse gadgets that consider either of the variants. Perform-
ing code re-randomization may further harden the implementation against both
attacks.



3.1. SECURE-BY-DESIGN OPTIMIZATION (SECOPT) 33

Verification of Security Properties

Code verification on binary code tests security properties in the binary code to
verify the preservation of these security properties or identify security vulnerabil-
ities. Typically, code verification approaches rely on formal methods to provide
guarantees that the requested security properties hold. There are different code-
verification methods, including symbolic execution that uses constraint solving to
prove the requested properties and abstract interpretation that depends on a formal
abstraction of the program values and semantics.

SecOpt generates secure code against timing side channels. After code gener-
ation, we verify the constant-resource property in the generated code to increase
the trust in SecOpt. In particular, to ensure that the constant-resource property
holds in the generated code, we verify this property using external static-analysis
tools. More specifically, for each processor we target, we use a Worst Case Execu-
tion Time (WCET) tool to verify that secret-dependent paths take the same time.
WCET analysis generates an overapproximation (and optionally an underapproxi-
mation, Best Case Execution Time (BCET)) of the execution time of a program.
WCET analysis is an important topic in embedded systems because it is an input
to schedulability analysis, which tests whether the system under analysis meets its
deadlines. To verify the constant-resource property, we derive the WCET and the
BCET using symbolic values for the secret input variables of the function under
analysis and compare these values. If the two values are equal, we have an in-
dication that the execution time does not depend on these secret values. If the
two values are not equal, then we need to investigate further if the execution time
depends on secret values, or if the difference between WCET and BCET is due to
overapproximation of the analysis.

In some cases, secure compilation uses verification approaches to accept
compiler-generated code if the verification test succeeds or reject the code if
the process identifies security vulnerabilities [62]. In this work, we verify the
constant-time property in WebAssembly. Our approach uses relational symbolic
execution, a method that performs symbolic execution on a program with two
input states or two programs with the same input state [60]. For testing the
constant-time property, we execute symbolically two executions of the same pro-
gram with two input states. The two states differ with regard to the secret input
values, which take different initial symbolic values. Then, the analysis executes
the program symbolically using one state that considers both executions. The
analysis is possible by using paired variables, each consisting of two versions that
correspond to the different executions. Given that the two states differ only with
regard to the secret values, a potential execution path divergence signifies a timing
leakage. Similarly, the analysis needs to ensure that there are no secret-dependent
memory operations, which allow cache timing attacks. More formally, we consider
{Φ}〈(M1, c)|(M2, c)〉{Ψ}, where Φ is the precondition, namely the security policy
that defines which input variables are secret or public. Ψ denotes the verification
properties, namely the absence of secret-dependent control-flow instructions and



34 CHAPTER 3. APPROACH AND METHODOLOGY

secret-dependent memory operations. M1 and M2 are the initial memory instances,
and c is the program instructions. When discovering a vulnerability, the approach
returns the vulnerability as a solution to the requirement.

Loop analysis is a challenge in symbolic execution because it may lead to path
explosion. Among different methods to deal with loops in symbolic execution are
using bounded loop unrolling or loop invariants. The former may lead to increased
analysis overhead and unsound analysis, whereas the latter is challenging to per-
form automatically. Our work considers both unbounded loop unrolling and the
generation of a relational invariant.

3.2 Methodology

The topic of this dissertation combines cybersecurity and computer science meth-
ods, which include theoretical research and applied experimental research [63].

In the bibliography, there are several compiler-based approaches to tackle se-
curity properties. The process of conducting research for each research question
starts with a survey in the area to identify challenges in state-of-the-art research.
We identify the need for highly optimizing security approaches and evaluating the
effect of the sequential composition of multiple mitigations. After defining the
problem, we follow an iterative process that consists of three steps, 1) define a
hypothesis, 2) implement/extend a research prototype to evaluate the hypothesis,
3) refine the hypothesis based on the results. This process repeats until the final
research project is complete. The work towards this dissertation consists of the
following incremental steps:

• Design and evaluate an LNS-based algorithm as an extension to Unison to
generate highly diverse solutions in Mips. This step is the first part of the
development of SecOpt.

• Design and evaluate a new LNS-based algorithm based on the structural de-
composition of a function. Evaluate this approach in a whole-program diver-
sification scheme for Mips32.

• Extend SecOpt to optimize code that preserves software masking and supports
the ARM Cortex M0 processor. As part of this step, we prove that the
proposed constraint model leads to code that does not leak secret information
through transitional leakages due to register reuse and memory-bus reuse.

• Extend SecOpt to optimize code that preserves the constant-resource property
and combine with diversification.

Apart from these incremental steps towards SecOpt, we investigate a different
approach to perform whole-program verification of the constant-time property in
WebAssembly.



3.2. METHODOLOGY 35

We evaluate Publications 1 and 2 using benchmark functions from two bench-
mark suites, MediaBench [64] and SPEC CPU2006 [65] that are popular for eval-
uating embedded-system and compiler-based approaches. Publication 1 uses 17
small, randomly selected functions from both benchmark suites. The evaluation
shows that the proposed LNS-based approach trades scalability for diversity in CP.
In addition, the evaluation shows our approach allows the generation of multiple
optimal diverse solutions for the majority of the benchmarks. Relaxing the opti-
mality constraint enables more diverse solutions. Publication 2 uses 20 medium-size
functions from MediaBench. The evaluation of Publication 2 confirms the results
of Publication 1 for larger programs. In addition, Publication 2 presents a whole-
program diversification evaluation using a case study from MediaBench, G.721.
This application is an implementation of a set of voice compression algorithms. We
use a GCC-based tool to link the generated variants for the MIPS32-based Pic32MX
microcontroller. This case study shows up to 95% code-reuse gadget diversification
or relocation.

Publications 3, 4, and 5 use cryptographic implementations from the real world
and previous work that evaluates similar approaches. The evaluation of Publication
3 uses real-world constant-time implementations from diverse libraries, including
libsodium [66], HACL* [67], BearSSL [68]. In addition, the evaluation uses known
timing vulnerabilities from the literature. This publication presents two approaches
to verify constant-time programs. The first approach uses unbound loop unrolling
and is able to verify 55 out of 57 implementations. The second approach uses a
lightweight relational invariant generation and is able to verify the rest two imple-
mentations but fails to analyze many implementations due to the limited precision
of the generated invariant.

Publication 4 applies theoretical and experimental research methodology in the
evaluation. To ensure security, we prove that the security constraint model implies
secure code generation based on our leakage model. In addition, the evaluation
in Publication 4 uses twelve benchmark functions that we derive from previous
work [25] to perform an empirical evaluation. We evaluate the performance over-
head of the generated code and the compilation-time overhead compared with Uni-
son. To evaluate the speedup of our approach compared to other security-aware
approaches, we compare with the approach by Wang et al. [25] and LLVM with no
optimizations, -O0. This evaluation shows a high speedup of up to three times faster
than LLVM -O0 and the work by Wang et al. [25] at the expense of a compilation
time increase.

The evaluation of Publication 5 uses the same benchmarks as Publication 4 and
an additional set of five benchmarks to evaluate the constant-resource property.
These benchmark functions comprise diverse algorithms that may take secret values
as inputs and contain secret-dependent control-flow instructions [69]. To verify
the security of the generated solutions, we use two WCET tools for ARM Cortex
M0 [70] and Mips [71, 72]. These tools calculate the worst- and best-case execution
time, and we use them to show that the generated variants do not depend on secret
values. The evaluation indicates that property-preserving diversification introduces



36 CHAPTER 3. APPROACH AND METHODOLOGY

diversification-time overhead, however, this does not reduce the effectiveness against
code-reuse attacks.



Chapter 4

Related Work

This chapter presents state-of-the-art research in defenses against code-reuse at-
tacks (Section 4.1), and side-channel attacks (Section 4.2). The latter consists of
three parts and includes related work on mitigations against timing side-channel
attacks, mitigations against power side-channel attacks, and verification approaches
for timing side-channel attacks.

4.1 Code-Reuse Attacks Mitigations

Table 4.1: Mitigation approaches against code-reuse attacks

Pub. Mitigation InL OutL ML Av.
Abadi et al. [35] CFI x86 x86 Bin
Pappas et al. [8] Div x86 x86 Bin
Homescu et al. [9] Div C, C++ x86 llvm
AVRAND [73] Div, RR AVR AVR Bin
C-Flat [74] CFI ARM ARM Bin
CFI CaRE [75] CFI ARM ARM Bin
Koo et al. [76] Div, RR C, C++ x86 llvm
MicroGuard [1] Div, CFI C, C++ ARM llvm/Bin
HARM [77] Div, RR ARM ARM Bin
FH-CFI [78] HWCFI ARM ARM Bin

SecOpt [17, 18, 21] Div C, C++
Mips,
ARM

llvm

Code-reuse attacks constitute a serious threat to computer software in both
high-end computers [29] and embedded systems [27, 28]. There are two main mech-
anisms to mitigate code-reuse attacks, CFI [34] and automatic software diversifi-
cation [7]. CFI includes hardware and software mechanisms to prevent illegitimate

37



38 CHAPTER 4. RELATED WORK

control-flow violations during program execution. On the other end, automatic
software diversification hinders code-reuse attacks by introducing uncertainty to
the program implementation. This uncertainty affects the location and exact im-
plementation of code-reuse gadgets, which are the building blocks of code-reuse
attacks.

Table 4.1 shows a number of representative approaches against code-reuse at-
tacks. The table includes the publication citation (Pub.), the mitigation each ap-
proach uses (Mitigation), the input language (InL), the output language (OutL),
the mitigation level (ML), which is either at binary code (Bin) or a compiler (e.g.
llvm), and finally, the availability of the respective artifact (Av.). For the availabil-
ity field (Av.), indicates that the artifact is available, whereas indicates that
the main author of this dissertation was not able to find the artifact.

Table 4.1 shows a set of approaches that use CFI against code-reuse attacks [35,
74, 75, 1, 78]. The majority of these approaches target embedded systems, including
C-Flat [74], CFI CaRE [75], and FH-CFI [78], and MicroGuard [1] that target ARM
systems. One of these approaches, MicroGuard [1] combines CFI with software
diversification against code-reuse attacks. In general, CFI approaches lead to higher
execution-time overhead than software diversification approaches [34, 7].

Automatic software diversification (Div in Table 4.1) is another approach against
code-reuse attacks. ASLR is a coarse-grained software diversification method that
randomly selects the address space of key data areas, such as the address of dynamic
libraries. ASLR is the most widely-used diversification method, and its effect on
performance is insignificant. However, ASLR leads to low entropy, which enables
brute-force code-reuse attacks [79]. Fine-grained software diversification, which
includes diversification at the function- or instruction-level of the program, provides
improved protection against code-reuse attacks.

Pappas et al. [8] perform fine-grained software diversification at the binary level
and apply zero-cost transformations, namely register randomization, instruction
schedule randomization, and function shuffling. However, they do not evaluate
the actual performance overhead of their approach. In contrast, SecOpt uses a cost
model to calculate the performance overhead and allows diversification with no per-
formance degradation. Also, SecOpt enables more transformations including NOP
insertion, register copying, spilling, and constant rematerialization. SecOpt may be
combined with function shuffling to achieve whole-program diversification [18].

Homescu et al. [9] present a fine-grained diversification approach that inserts
NOP instructions to the code. To reduce the introduced overhead, they use profiling
information to prioritize NOP insertion in pieces of code that have low execution
frequency. Seibert et al. [33] show that static frequency NOP insertion is possible to
bypass using side-channel information. SecOpt is also able to control the introduced
overhead by using a static cost model, while it allows targeted diversification in code
without introducing performance overhead. The latter is possible because SecOpt
uses a larger variety of transformations than NOP insertion.

The introduction of advanced code-reuse attacks allows for deciphering the di-
versification scheme by using a memory vulnerability to read the program mem-



4.2. DEFENDING SIDE-CHANNEL ATTACKS 39

ory [31, 32], or using timing information [33]. These attacks give rise to re-
randomization (RR in Table 4.1) approaches. Re-randomization typically switches
between different program variants at specific time intervals [76] or at different
events, such as at reboot time [73]. Re-randomization may introduce additional
runtime performance overhead that may be low, such as HARM [77] that intro-
duces 5% overhead. SecOpt may be used in a re-randomization scheme at boot
time against attacks, such as BROP [32]. We leave the evaluation of such an ap-
proach as future work.

4.2 Defending Side-Channel Attacks

Side-Channel attacks constitute a serious threat to cryptographic implementations.
There are different side-channel attacks, including timing, power, electromagnetic,
and sound side-channel attacks. This dissertation focuses on timing and power side-
channel mitigations. The next sections present a set of representative mitigation
approaches against these attacks.

Defending Timing Side-Channel Attacks

In this section, we discuss methods to mitigate and verify timing side-channel at-
tacks.

Timing Side-Channel Mitigations

Table 4.2: Mitigation approaches against timing side-channel attacks

Pub. Attack Mitig. InL OutL ML Av.
Crane et al. [14] TSC Div C, C++ x86a llvm
Raccoon [15] TSC Obf C, C++ x86 llvm
Fact [80] TSC CT DSL C Custom
HACL* [81] TSC, MC CT DSL C Flow

Jasmin [82] TSC, MC CT DSL x86 Custom
Winderix et al.
[61]

TSC, IL BB C, C++ MSP430 llvm

Constantine [83] TSC CT C, C++ x86 llvm
Crow [84] TSC Div C, C++ Wasm llvm

Vu et al. [4]
VBL,
TSC

SM,CT C, C++ ASM llvm

SecOpt [21]
TSC,
TBL,
CRA

Div,
SM/BB

C, C++
Mips,
ARM

llvm

aThe evaluation targets x86, however the method applies to other architectures



40 CHAPTER 4. RELATED WORK

There are different approaches to mitigate timing side-channel attacks. These
approaches either eliminate the secret-dependent timing differences in the program
execution [85] or obfuscate the timing profile of the program to reduce the ability
of the attacker to identify secret values [15, 14] Table 4.2 shows a set of represen-
tative mitigation approaches against timing side-channel attacks (TSC). The table
includes the publication (Pub.), the attack, the approach mitigates (Attack), the
mitigation the approach applies (Mitig.), the input language (InL), the output lan-
guage (OutL), the mitigation level (ML), which is a custom compiler (custom), a
specific compiler (Flow), or the LLVM compiler (llvm). The last field (Av.) indi-
cates that the artifact is available ( ) or not available ( ).

There are two main approaches that eliminate secret-dependent time differences,
1) cryptographic constant-time (CT) programming discipline [85], which eliminates
secret-dependent timing differences by rewriting the code, and 2) constant-resource
(BB) programming [45], which instead balances the different execution paths to
take the same time.

The constant-time programming discipline replaces secret-dependent branch
and memory operations with constant-time equivalent that make use of logic opera-
tions. HACL* [81] is an approach to generate code that is constant time and mem-
ory safe against memory corruption (MC). The output code is in C, and thus, there
is another compilation step from C to assembly code that may use CompCert [86],
a verified compiler. Jasmin [82] is low-level optimizing cryptographic Domain Spe-
cific Languages (DSLs) that generate efficient constant-time code for cryptographic
implementations. The main drawback of Jasmin is that the input code is writ-
ten in a low-level language, which requires re-implementing legacy cryptographic
algorithm implementations and acquiring a deep understanding of low-level code.

Constant-resource programming is a more relaxed mitigation approach com-
pared to the constant-time programming discipline. In particular, constant-resource
programming does not require the absence of secret-dependent branches. Instead, it
allows balancing secret-dependent branches with NOP instructions to hinder the at-
tacker from identifying the selected execution path. Winderix et al. [61] implement
an approach to balance secret-dependent branches on MSP430. Their approach
protects against both timing attacks and interrupt-latency (IL) side-channel at-
tacks. SecOpt focuses on timing attacks and achieves balancing secret-dependent
branches with up to 70% overhead.

Constantine [83] is a different approach that achieves constant time by auto-
matically linearizing code. Their approach introduces large overhead of up to five
times. Raccoon [15] uses obfuscation (Obf) to hide secret-dependent leaks. The
main disadvantage of this approach is high performance overhead of up to 16 times.
Crane et al. [14] mitigate timing side channels using fine-grained code diversification
(Div) by inserting memory NOP operations. However, their approach may lead to
up to 8 times performance overhead. The main disadvantage of these approaches
is high execution-time overhead compared to SecOpt that introduces up to 70%
overhead.



4.2. DEFENDING SIDE-CHANNEL ATTACKS 41

Verification

Code verification is a way to identify timing vulnerabilities in programs. Almeida
et al. [85] use product programs to verify constant-time programs in C. Vale [87] ver-
ifies the correctness, safety, and security of binary code in ARM and x86. Among
other security properties, Vale preserves the constant-time property using taint
analysis. Binsec/Rel [24] performs relational symbolic execution [60] to verify
constant-time program in binary code.

The verification approach of this thesis, Vivienne [19] uses also relational sym-
bolic execution to verify the constant-time property in WebAssembly code. In
addition, Vivienne implements a lightweight invariant inference approach. Bastys
et al. [88] is another approach that uses concolic execution to verify the constant-
time property in WebAssembly.

Power Side-Channel Mitigations

Table 4.3: Mitigation approaches against power side-channel attacks

Pub. Attack Mitig. InL OutL ML Av.
Eldib and Wang
[89]

VBL SM DSL - Custom

Papagiannopoulos
and Veshchikov
[13]

TBL SM AVR AVR Binary

Besson et al. [62] IFL - C ASM CompCert
Wang et al. [25] TBL SM C, C++ ASM llvm
Athanasiou et al.
[26]

TBL SM ARM ARM Binary

Vu et al. [4]
VBL,
TSC

SM,CT C, C++ ASM llvm

Rosita [47] TBL SM ARM ARM Binary

SecOpt [20] TBL SM C, C++
Mips,
ARM

llvm

Power side-channel attacks record the power traces of a computer to extract
secret values, such as cryptographic keys. There are different mitigation approaches
to hinder power side channel attacks during the program execution. An approach
to mitigate power side channels is to randomize the secret data, so that the power
traces do not reveal secret information to the attacker. Software masking (SM), uses
the exclusive-OR operation, ⊕, to mix the secret value with a randomly generated
value. This randomly generated value, or mask, allows the randomization of the
secret value and requires the same mask to decipher.

We consider different types of power leakage, Value-Based Leakage (VBL) and
Transition-Based Leakage (TBL). VBLs appear when secret values are not masked,



42 CHAPTER 4. RELATED WORK

i.e. public values known to the attacker interact with secret values [89, 4], whereas,
TBL appear when fundamental hardware structures, such as hardware registers,
memory cells, and memory bus, leak information by transitioning from one value
to another. The absence of VBLs does not guarantee the absence of TBLs, whereas
the opposite is true.

Table 4.3 shows a set of representative mitigation approaches against power side-
channel attacks. For each of the approaches, Table 4.3 shows the publication (Pub.),
the attack the approach mitigates (Attack), the mitigation the approach applies
(Mitig.), the input language (InL), the output language (OutL), the mitigation
level (ML), which is either binary or a compiler, like CompCert or LLVM (llvm).
The last field (Av.) indicates that the artifact is available ( ), not available ( ),
parts of the artifact are missing ( ).

The approaches by Papagiannopoulos and Veshchikov [13] and Rosita [47] are
processor specific, focusing on AVR and ARM Cortex M0, respectively. They
mitigate different types of TBLs, including register-reuse leakage, memory-reuse
leakage, and memory-bus-reuse leakage, which are detected in a specific processor
implementations.

Wang et al. [25] take as input masked code and use a more generic type-inference-
based approach [90] to identify possible register-reuse leaks and subsequently mit-
igate them. The main disadvantage of this approach is that it does not generate
highly optimized code. SecOpt follows a similar type-inference-based approach to
optimize masked code with no register-reuse leaks and memory-bus reuse leaks.

Athanasiou et al. [26] use the same type-inference approach to find and mitigate
possible register-reuse leakages. SecOpt generates code that is free from register-
reuse leaks and memory-bus reuse leaks.

4.3 Secure Compilation and Optimization

Popular languages like C enable security vulnerabilities, such as memory corruption
and many undefined behaviors [3]. Compiler development and research focus mostly
on functional correctness in accordance with the language specification. In addition,
general-purpose compilers focus on optimizing the performance efficiency or the
size of the code, however, they rarely consider security properties [3]. Therefore,
important compiler algorithms and heuristics are designed with performance and
code size in mind and not security. With the advent and popularity of the Internet
and recently the IoT devices, where multiple computers connect to each other,
security has become a major concern. Secure compilation is a field that aims at
generating secure code, where performance is a secondary aspect.

Table 4.3 presents approaches that combine security features with highly opti-
mized code. Jasmin [82] is an approach that generates secure and optimized code.
The main disadvantage of Jasmin is that it uses a low-level DSL, that requires
writing cryptographic code in a new assembly-like language.



4.3. SECURE COMPILATION AND OPTIMIZATION 43

Vu et al. [91] present an approach that prevents compiler-introduced vulner-
abilities in LLVM. Vu et al. [91] generate highly optimized code that preserves
security properties, such as software masking (SM) against VBLs and the constant-
time property for timing side channels (TSC). Unfortunately, the artifact for their
approach is not available.

A different approach by Besson et al. [62] proves that the compiler preserves
security properties. In particular, they show that two optimization passes in Com-
pCert [86] preserve information-flow properties at function entries and exits.





Chapter 5

Summary of Publications

The following sections (Sections 5.1 to 5.5), provide a summary of each paper that
is included in this dissertation

5.1 Publication 1: Constraint-Based Software
Diversification for Efficient Mitigation of Code-Reuse
Attacks

Fine-grained software diversification is an approach that is effective against code-
reuse attacks. Related work focuses on high-end computer architectures, with lit-
tle focus on embedded devices, although, code-reuse attacks target embedded de-
vices [28, 29, 30]. An additional advantage of fine-grained software diversification
is its low introduced overhead, which makes it suitable for resource-constrained
devices. Unfortunately, many related approaches do not control the introduced
performance overhead.

This publication presents a fine-grained software diversification approach that
uses CP to enable control over the introduced performance overhead. A wide range
of low-level program transformations in the underlying compiler backend enables
fine-grained diversification that targets Mips32, an embedded-system architecture.
The underlying constraint-based compiler backend generates optimized code with
regard to performance and code size. To achieve high diversity and scalability, this
publication proposes LNS, a local-search-based heuristic, which attempts to find
solutions to the constraint model that correspond to machine-code implementations.
The evaluation of the algorithm on 17 small functions from MediaBench and SPEC
CPU 2006 shows that the presented algorithm enables the generation of program
variants that are different from each other with an acceptable diversification time.
The available diversification transformations allow the generation of zero-overhead
variants, which corresponds to highly optimized function variants.

45



46 CHAPTER 5. SUMMARY OF PUBLICATIONS

5.2 Publication 2: Constraint-Based Diversification of JOP
Gadgets

Publication 1 presents an algorithm that is efficient and effective for small func-
tions that represent around 24% of the total set of functions in MediaBench. This
publication presents a different algorithm that allows the diversification of larger
functions using structural decomposition. This algorithm first solves a subproblem
that consists of the inter-block program-variable assignments and then, for each
basic block, it generates multiple solutions that can be combined to generate diver-
sified program variants. This publication also presents a distance measure that is
adjusted to the code-reuse attack properties. The evaluation uses 20 functions from
MediaBench that cover 96% of the function size in the bench suite. The evaluation
shows that the global LNS-based algorithm is more effective against code-reuse at-
tacks but scales up to around 60% of the functions in MediaBench, whereas the
decomposition-based algorithm scales to up to 93% of the functions. This publica-
tion evaluates also the effect of whole-program diversification on a case study. This
case study shows that the proposed diversification algorithms have high effective-
ness against code-reuse attacks while performing additional randomization steps,
such as function shuffling, improves the effectiveness of diversification measured by
gadget relocation.

5.3 Publication 3: Vivienne: Relational Verification of
Cryptographic Implementations in WebAssembly

Timing side-channel attacks constitute a serious threat to the security of crypto-
graphic implementations. Most languages and many algorithm implementations
are vulnerable to side-channel attacks, including WebAssembly, a new language for
the web, which is portable, efficient, and features security properties. The charac-
teristics of WebAssembly make it a suitable choice for implementing cryptographic
libraries with multiple cryptographic implementations already available.

Relational verification is an efficient approach for verifying programs that follow
the constant-time policy and/or locate constant-time violations. Vivienne presents
an approach that uses relational symbolic execution to identify timing vulnerabili-
ties in WebAssembly. Loop analysis is the main bottleneck of symbolic execution.
To deal with this, this publication proposes an approach to automatic relational
invariant generation.

The evaluation uses 57 cryptographic library implementations and shows that
relational symbolic execution with loop unrolling is efficient for the verification of
the constant-time property, when the loop bounds of the analyzed program are not
very high. For the benchmarks that contain large loop bounds, relational invariant
generation is more effective than unbound loop unrolling. However, sometimes the
automatic relational invariant does not capture the loop bounds, which results in
low effectiveness in analyzing compiler-generated code.



5.4. PUBLICATION 4: SECURING OPTIMIZED CODE AGAINST POWER
SIDE CHANNELS 47

5.4 Publication 4: Securing Optimized Code Against Power
Side Channels

Power side channels are a serious threat to cryptographic libraries. Power attacks
typically require access to the victim’s physical location and record the power con-
sumption of the target machine in time using devices, such as an oscilloscope. These
attacks are very powerful because they can identify small variations in the power
consumption of the executing program.

Software masking is a software mitigation against power side-channel attacks,
which hides secret values from the power traces using randomly generated variables.
These random values statistically remove the dependencies of the secret values from
the power traces.

Secret-dependent transitional effects, for example, when hardware registers or
the memory bus transition from one value to another, may leak secret information
through power side channels. Although the source code of a program may be masked
correctly, the compiler may invalidate these transformations by, for example, reusing
hardware registers. This publication presents a compiler-based approach that gen-
erates highly optimized code that mitigates power side-channel attacks. The paper
presents a formal proof that the proposed constraint model is correct with regard
to the leakage model. The evaluation of the approach on twelve masked programs
targeting two embedded architectures, ARM Cortex M0 and Mips, shows that our
approach leads up to 13% performance overhead compared to optimal non-secure
compilation and a geometric mean speedup of approximately three compared to
other secure-compilation approaches.

5.5 Publication 5: Thwarting Code-Reuse and
Side-Channel Attacks in Embedded Systems

Security protection of a computing system typically requires application of mul-
tiple mitigations against different attacks that may affect the system. Applying
these mitigations sequentially may lead to mitigation conflicts, when the latest
applied mitigation reverts or invalidates the changes of the previously applied mit-
igations. Embedded systems have additional constraints that derive from resource
limitations, such as battery life, and thus, overall resource estimation is of major
importance.

Publication 5 concerns thwarting code-reuse attacks and side-channel attacks
in embedded systems. An efficient mitigation against code-reuse attacks is fine-
grained code diversification, while typical mitigations against power and timing
side-channel attacks include low-level code transformations. Both fine-grained code
diversification and side-channel mitigations operate at the low-level implementation
of the input code. The evaluation runs on 15 benchmark programs derived from
previous work against side-channel attacks. This publication shows that 1) fine-
grained software diversification may break side-channel mitigations, 2) a combined



48 CHAPTER 5. SUMMARY OF PUBLICATIONS

mitigation against both code-reuse attacks and side-channel attack is feasible but
with increased compilation overhead, and 3) there is no clear negative effect of
the effectiveness of diversification against code-reuse attacks, when protecting also
against side-channel attacks.



Chapter 6

Conclusion and Future Work

This chapter presents the conclusion of this dissertation (Section 6.1) and discusses
future research directions (Section 6.2).

6.1 Summary of Contributions

This dissertation presents a combinatorial approach to secure code generation. This
work features three properties: performance awareness, composability, and formal-
isation. Below we summarise the answers to the research questions of this disser-
tation and discuss the obtained research results.

RQ1: How feasible and effective is performance-aware
constrained-based software diversification against code-reuse
attacks?

Our experiments show that performance-aware constraint-based software diversifi-
cation can effectively diversify code-reuse gadgets. The proposed algorithm allows
for the efficient generation of highly diverse solutions, while it controls the generated
performance overhead. Our approach scales to up to medium-sized programs of ap-
proximately 500 Machine Intermediate Representation (MIR) instructions. Hence,
we believe that our approach constitutes an important building block for whole-
program diversification or re-randomization to provide high effectiveness against
code-reuse attacks.

RQ2: How feasible is secure constraint-based optimization of
cryptographic implementations?

Our approach to constraint-based optimization of cryptographic implementation is
highly optimizing for small cryptographic functions of up to 100 MIR instructions.
The results that generate programs free of transitional leaks show a high speedup

49



50 CHAPTER 6. CONCLUSION AND FUTURE WORK

compared to competing approaches and non-optimized code. This is achieved at
the expense of compilation time. Constant-resource preservation is effective against
timing side channels and generates secure low-level code.

RQ3: How feasible and effective is a combined mitigation against
code-reuse attacks and side-channel attacks?

Our experiments show that combining software diversification with software mit-
igations against side-channel attacks enables the generation of multiple program
variants that are secure against side-channel attacks. There is an overhead on the
diversification time, however, there is no clear effect on the effectiveness of diversi-
fying code-reuse gadgets and thus hindering code-reuse attacks.

RQ4: How feasible is code verification of binary code against
timing side channels?

Our constant-resource verification approach verifies the constant-resource property
in all generated programs by SecOpt. Similarly, our approach to relation verification
to test the constant-time property in WebAssembly is able to analyze successfully 55
out of 57 real-world implementations consisting of large code bases. In addition, the
relational invariant approach is able to analyze the remaining two implementations,
while a more precise invariant generation approach may successfully analyze the
total set of implementations.

Conclusion

This dissertation developed a constraint-based compiler backend approach that
presents a concrete step towards secure-by-design optimized compilation. The
main features of this approach are composability of security measures, performance
awareness that allows the generation of highly optimized code, and a constraint-
based framework that exhibits properties that have been formalised. Code verifi-
cation is an additional step toward highly trusted code generation. To summarize,
this work proposed a novel compiler-based approach to generate highly optimized
and secure code against major vulnerabilities that affect security-critical software.

6.2 Future Work

There are several directions for future work that can focus on improvements and
extensions to proposed approaches. The extension of the current work could include
1) evaluating our approach against full-fledged attacks, 2) extending the software-
masking optimization approach to larger programs by decomposing linearized pro-
grams into smaller pieces, and 3) extending SecOpt to support more cybersecurity
mitigations. Below we discuss the directions of the future work in detail.



6.2. FUTURE WORK 51

Evaluation against Complete Attacks

This dissertation concerns the automatic and correct-by-design generation of code
that satisfies security mitigations. Our work evaluates these approaches using for-
mal methods (see Publication 4), empirical evaluation (see Publication 3 and 5),
or statistical properties (see Publication 1 and 2). However, an interesting research
direction would be to investigate the effect on full-fledged attacks. Two exam-
ples of attacks include code-reuse attacks and power side-channel attacks that have
recently received increased interest.

Software diversification provides statistical properties that hinder code-reuse
attacks. However, an interesting direction is to design different types of code-reuse
attacks, such as ROP and JOP attacks, in Mips and ARM. This research direction
may give further insights into how to improve and target diversification towards
full-fledged attacks.

Power side-channel attacks have advanced significantly in the recent years, in-
cluding statistical analysis of the power traces using deep learning. These attacks
are powerful and evaluating our approach against such attacks may provide addi-
tional insights on extending the mitigation of our approach to further transitional
leaks.

Scalability Enhancement

Scalability, namely the ability to analyze large problems is an active and demanding
research topic in combinatorial optimization. This dissertation has made clear steps
toward increased scalability in Publication 2. In addition, Publication 3 investigates
additional solving methods to enhance the scalability of the optimization approach.
The introduction of security constraints increases the complexity of the problem
and, hence, its compilation time. However, Publication 3 uses linearized input
programs that consist of a single basic block. One step towards improving the
scalability of the approach in Publication 3 is extending the security analysis to
support if statements and loops. This direction may reduce the accuracy of the
security analysis and lead to reduced code efficiency.

Cybersecurity Countermeasures

This dissertation concerns mitigations against code-reuse attacks and side-channel
attacks. However, there are additional attacks that depend on compiler-generated
code.

Memory-Probing Attacks

Memory-probing attacks allow an adversary to read the content of the main memory
and/or the register file [92]. One idea is to use SecOpt to reduce the presence of
secret values in memory by reducing the live range of registers and stack operations.
Overwriting the secret data in memory, including the stack and register after the end



52 CHAPTER 6. CONCLUSION AND FUTURE WORK

of the live range is an additional transformation towards reducing the capabilities
of memory-probing attacks.

Speculation Attacks

Modern processors use speculation to improve the performance of the program ex-
ecution when the result of a branch is not known. In particular, the processor uses
statistical information from previous branches to take a branching decision before
the processor calculates the actual branch decision. Speculative execution improves
the processor performance when the branch prediction is correct. In case of mis-
prediction, the processor discards the speculatively executed instruction results.
However, the processor does not reverse any side effects of the speculative execu-
tion, such as cache updates. A compiler-based approach to mitigate these attacks
may include padding vulnerable branches with NOPs that delay the speculative
execution of instructions that leak secret information. This approach may intro-
duce high performance overhead. Instead, verification of the absence of speculation
leaks using relational verification is an effective method to ensure the security of
the generated software [93].



References

[1] M. Salehi, D. Hughes, and B. Crispo, “MicroGuard: Securing Bare-Metal
Microcontrollers against Code-Reuse Attacks,” in 2019 IEEE Conference on
Dependable and Secure Computing (DSC), Nov. 2019, pp. 1–8.

[2] A. Bendovschi, “Cyber-Attacks – Trends, Patterns and Security Countermea-
sures,” Procedia Economics and Finance, vol. 28, pp. 24–31, Jan. 2015.

[3] V. D’Silva, M. Payer, and D. Song, “The Correctness-Security Gap in Compiler
Optimization,” in 2015 IEEE Secur. Priv. Workshop, 2015, pp. 73–87.

[4] S. T. Vu, A. Cohen, A. De Grandmaison, C. Guillon, and K. Heydemann,
“Reconciling optimization with secure compilation,” Proceedings of the ACM
on Programming Languages, vol. 5, no. OOPSLA, pp. 1–30, 2021.

[5] R. C. Lozano, M. Carlsson, G. H. Blindell, and C. Schulte, “Combinatorial
Register Allocation and Instruction Scheduling,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 41, no. 3, pp. 17:1–17:53,
2019.

[6] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-
libc Without Function Calls (on the x86),” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS ’07. New
York, NY, USA: ACM, 2007, pp. 552–561.

[7] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated Soft-
ware Diversity,” in 2014 IEEE Symposium on Security and Privacy, May 2014,
pp. 276–291.

[8] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the Gad-
gets: Hindering Return-Oriented Programming Using In-place Code Random-
ization,” in 2012 IEEE Symposium on Security and Privacy, May 2012, pp.
601–615, iSSN: 1081-6011.

[9] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz, “Profile-
guided Automated Software Diversity,” in Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), ser.
CGO ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 1–11.

53



54 REFERENCES

[10] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances
in Cryptology — CRYPTO’ 99, ser. Lecture Notes in Computer Science.
Springer, 1999, pp. 388–397.

[11] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a Leak-
age Model,” in Cryptographic Hardware and Embedded Systems - CHES 2004,
ser. Lecture Notes in Computer Science. Springer, 2004, pp. 16–29.

[12] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[13] K. Papagiannopoulos and N. Veshchikov, “Mind the Gap: Towards Secure
1st-Order Masking in Software,” in International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer, 2017, pp. 282–297.

[14] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwarting
Cache Side-Channel Attacks Through Dynamic Software Diversity,” in Pro-
ceedings 2015 Network and Distributed System Security Symposium. Internet
Society, 2015.

[15] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing Digital {Side-
Channels} through Obfuscated Execution,” in 26th USENIX Security Sym-
posium (USENIX Security 15), 2015, pp. 431–446.

[16] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up to speed with
WebAssembly,” in Proc. of the Conf. on Programming Language Design and
Implementation (PLDI), 2017, pp. 185–200.

[17] R. M. Tsoupidi, R. Castañeda Lozano, and B. Baudry, “Constraint-Based
Software Diversification for Efficient Mitigation of Code-Reuse Attacks,” in
International Conference on Principles and Practice of Constraint Program-
ming, 2020, pp. 791–808.

[18] R. M. Tsoupidi, R. Castañeda Lozano, and B. Baudry, “Constraint-based
diversification of JOP gadgets,” Journal of Artificial Intelligence Research,
vol. 72, pp. 1471–1505, 2021.

[19] R. M. Tsoupidi, M. Balliu, and B. Baudry, “Vivienne: Relational Verification
of Cryptographic Implementations in WebAssembly,” in 2021 IEEE Secure
Development Conference (SecDev), 2021, pp. 94–102.

[20] R. M. Tsoupidi, R. C. Lozano, E. Troubitsyna, and P. Papadimitratos,
“Securing optimized code against power side channels,” arXiv preprint
arXiv:2207.02614, 2022, to appear in CSF’23.



REFERENCES 55

[21] R. M. Tsoupidi, E. Troubitsyna, and P. Papadimitratos, “Thwarting
code-reuse and side-channel attacks in embedded systems,” arXiv preprint
arXiv:2304.13458, 2023, under submission.

[22] “ENISA Threat Landscape 2022.” [Online]. Available: https://www.enisa.
europa.eu/publications/enisa-threat-landscape-2022

[23] S. Liu and B. Cheng, “Cyberattacks: Why, what, who, and how,” IT Profes-
sional, vol. 11, no. 3, pp. 14–21, 2009.

[24] L.-A. Daniel, S. Bardin, and T. Rezk, “Binsec/Rel: Efficient Relational Sym-
bolic Execution for Constant-Time at Binary-Level,” in 2020 IEEE Symposium
on Security and Privacy (SP), 2020, pp. 1021–1038.

[25] J. Wang, C. Sung, and C. Wang, “Mitigating power side channels during com-
pilation,” in Proc. 2019 27th ACM Jt. Meet. Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., ser. ESEC/FSE 2019. Association for Computing Ma-
chinery, 2019, pp. 590–601.

[26] K. Athanasiou, T. Wahl, A. A. Ding, and Y. Fei, “Automatic Detection and Re-
pair of Transition- Based Leakage in Software Binaries,” in Softw. Verification,
ser. Lecture Notes in Computer Science. Springer International Publishing,
2020, pp. 50–67.

[27] G.-A. Jaloyan, K. Markantonakis, R. N. Akram, D. Robin, K. Mayes, and
D. Naccache, “Return-Oriented Programming on RISC-V,” in Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security,
ser. ASIA CCS ’20, Oct. 2020, pp. 471–480.

[28] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented Program-
ming: A New Class of Code-reuse Attack,” in Proceedings of the 6th ACM Sym-
posium on Information, Computer and Communications Security, ser. ASI-
ACCS ’11. New York, NY, USA: ACM, 2011, pp. 30–40.

[29] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented Programming Without Returns,” in Proceed-
ings of the 17th ACM Conference on Computer and Communications Security,
ser. CCS ’10. New York, NY, USA: ACM, 2010, pp. 559–572.

[30] O. Gilles, F. Viguier, N. Kosmatov, and D. G. Pérez, “Control-flow integrity
at risc: Attacking risc-v by jump-oriented programming,” 2022.

[31] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. Sadeghi,
“Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address
Space Layout Randomization,” in 2013 IEEE Symposium on Security and Pri-
vacy, May 2013, pp. 574–588.

https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022


56 REFERENCES

[32] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh, “Hacking
Blind,” in 2014 IEEE Symposium on Security and Privacy, May 2014, pp.
227–242, iSSN: 2375-1207.

[33] J. Seibert, H. Okhravi, and E. Söderström, “Information Leaks Without Mem-
ory Disclosures: Remote Side Channel Attacks on Diversified Code,” in Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, ser. CCS ’14, Nov. 2014, pp. 54–65.

[34] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-Flow Integrity: Precision, Security, and Performance,”
ACM Computing Surveys, vol. 50, no. 1, pp. 16:1–16:33, Apr. 2017.

[35] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,”
in Proceedings of the 12th ACM conference on Computer and communications
security, ser. CCS ’05, Nov. 2005, pp. 340–353.

[36] B. Randell, “System structure for software fault tolerance,” in Proceedings
of the international conference on Reliable software. New York, NY, USA:
Association for Computing Machinery, Apr. 1975, pp. 437–449.

[37] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: A secretless framework
for security through diversity.” in USENIX Security Symposium, 2006, pp.
105–120.

[38] F. B. Cohen, “Operating system protection through program evolution.” Com-
put. Secur., vol. 12, no. 6, pp. 565–584, 1993.

[39] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer systems,”
in Proceedings. The Sixth Workshop on Hot Topics in Operating Systems (Cat.
No.97TB100133), May 1997, pp. 67–72.

[40] B. Persaud, B. Obada-Obieh, N. Mansourzadeh, A. Moni, and A. Somayaji,
“Frankenssl: Recombining cryptographic libraries for software diversity,” in
Proceedings of the 11th Annual Symposium On Information Assurance. NYS
Cyber Security Conference, 2016, pp. 19–25.

[41] N. Harrand, T. Durieux, D. Broman, and B. Baudry, “Automatic diversity in
the software supply chain,” arXiv preprint arXiv:2111.03154, 2021.

[42] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer
Networks, vol. 48, no. 5, pp. 701–716, 2005.

[43] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.

[44] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Countermeasures:
The Case of AES,” in Topics in Cryptology – CT-RSA 2006, ser. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 1–20.



REFERENCES 57

[45] G. Barthe, S. Blazy, R. Hutin, and D. Pichardie, “Secure Compilation of
Constant-Resource Programs,” in CSF 2021 - 34th IEEE Computer Security
Foundations Symposium. IEEE, Jun. 2021, pp. 1–12.

[46] V. C. Ngo, M. Dehesa-Azuara, M. Fredrikson, and J. Hoffmann, “Verifying and
Synthesizing Constant-Resource Implementations with Types,” in 2017 IEEE
Symposium on Security and Privacy (SP), May 2017, pp. 710–728, iSSN: 2375-
1207.

[47] M. A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, and Y. Yarom,
“Rosita: Towards Automatic Elimination of Power-Analysis Leakage in Ci-
phers,” Proceedings 2021 Network and Distributed System Security Symposium,
2021, appears in NDSS 2022.

[48] K. Ngo, E. Dubrova, and T. Johansson, “Breaking Masked and Shuffled CCA
Secure Saber KEM by Power Analysis,” in Proceedings of the 5th Workshop
on Attacks and Solutions in Hardware Security, Nov. 2021, pp. 51–61.

[49] W.-J. van Hoeve and I. Katriel, “Global constraints,” in Foundations of Arti-
ficial Intelligence. Elsevier, 2006, vol. 2, pp. 169–208.

[50] J.-C. Régin, “A filtering algorithm for constraints of difference in CSPs,” in
AAAI, vol. 94, 1994, pp. 362–367.

[51] L. Ingmar, M. Garcia de la Banda, P. J. Stuckey, and G. Tack, “Modelling
diversity of solutions,” in Proceedings of the thirty-fourth AAAI conference on
artificial intelligence, 2020.

[52] E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh, “Finding Diverse and
Similar Solutions in Constraint Programming,” in National Conference on Ar-
tificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, 2005, p. 6.

[53] L. Popovic, A. Côté, M. Gaha, F. Nguewouo, and Q. Cappart, “Scheduling
the equipment maintenance of an electric power transmission network using
constraint programming,” in 28th International Conference on Principles and
Practice of Constraint Programming (CP 2022). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2022.

[54] M. Gendreau, J.-Y. Potvin et al., Handbook of metaheuristics. Springer, 2010,
vol. 2.

[55] P. Shaw, “Using constraint programming and local search methods to solve
vehicle routing problems,” in Principles and Practice of Constraint Program-
ming, ser. Lecture Notes in Computer Science, vol. 1520. Springer, 1998, pp.
417–431.



58 REFERENCES

[56] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation,” in CGO. IEEE, 2004.

[57] R. M. Stallman, Using the GNU Compiler Collection: a GNU manual for GCC
version 4.3.3. CreateSpace, 2009.

[58] G. Hjort Blindell, Instruction Selection. Springer International Publishing,
2016.

[59] R. C. Lozano and C. Schulte, “Survey on Combinatorial Register Allocation
and Instruction Scheduling,” ACM Computing Surveys (CSUR), vol. 52, no. 3,
pp. 62:1–62:50, 2019.

[60] G. P. Farina, S. Chong, and M. Gaboardi, “Relational Symbolic Execution,”
in Proceedings of the 21st International Symposium on Principles and Prac-
tice of Declarative Programming, ser. PPDP ’19. Association for Computing
Machinery, Oct. 2019, pp. 1–14.

[61] H. Winderix, J. T. Mühlberg, and F. Piessens, “Compiler-Assisted Hardening
of Embedded Software Against Interrupt Latency Side-Channel Attacks,” in
2021 IEEE European Symposium on Security and Privacy (EuroS P), Sep.
2021, pp. 667–682.

[62] F. Besson, A. Dang, and T. Jensen, “Information-Flow Preservation in Com-
piler Optimisations,” in 2019 IEEE 32nd Comput. Secur. Found. Symp. CSF,
2019, pp. 230–23 012.

[63] T. Edgar and D. Manz, Research methods for cyber security. Syngress, 2017.

[64] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool
for evaluating and synthesizing multimedia and communicatons systems,” in
MICRO. IEEE, 1997, pp. 330–335.

[65] CPU 2006 Benchmarks, SPEC, 2020, https://www.spec.org/cpu2006, accessed
on 2020-03-20.

[66] Libsodium Community, “The sodium cryptography library (Libsodium),”
2018. [Online]. Available: https://libsodium.gitbook.io/doc

[67] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan, “Formally
Verified Cryptographic Web Applications in WebAssembly,” in 2019 IEEE
Symposium on Security and Privacy (SP), May 2019, pp. 1256–1274.

[68] T. Pornin, “Bearssl, a smaller SSL/TLS library,” last accessed May 14, 2021.
[Online]. Available: https://bearssl.org/

[69] H. Mantel and A. Starostin, “Transforming Out Timing Leaks, More or Less,”
in Computer Security – ESORICS 2015, ser. Lecture Notes in Computer Sci-
ence. Springer International Publishing, 2015, pp. 447–467.

https://www.spec.org/cpu2006
https://libsodium.gitbook.io/doc
https://bearssl.org/


REFERENCES 59

[70] A. Lindner, R. Guanciale, and M. Dam, “Proof-producing symbolic execution
for binary code verification,” 2023.

[71] D. Broman, “A Brief Overview of the KTA WCET Tool,” Dec. 2017, number:
arXiv:1712.05264 arXiv:1712.05264 [cs].

[72] R. M. Tsoupidi, “Two-phase WCET analysis for cache-based symmetric multi-
processor systems,” Master’s thesis, Royal Institute of Technology KTH, 2017.

[73] S. Pastrana, J. Tapiador, G. Suarez-Tangil, and P. Peris-López, “AVRAND: A
Software-Based Defense Against Code Reuse Attacks for AVR Embedded De-
vices,” in Detection of Intrusions and Malware, and Vulnerability Assessment,
ser. Lecture Notes in Computer Science, 2016, pp. 58–77.

[74] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-FLAT: Control-Flow Attestation for Embedded
Systems Software,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16, Oct. 2016, pp. 743–754.

[75] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
Supported Call and Return Enforcement for Commercial Microcontrollers,” in
Research in Attacks, Intrusions, and Defenses, ser. Lecture Notes in Computer
Science. Springer International Publishing, 2017, pp. 259–284.

[76] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis, “Compiler-
Assisted Code Randomization,” in 2018 IEEE Symposium on Security and
Privacy (SP), May 2018, pp. 461–477.

[77] J. Shi, L. Guan, W. Li, D. Zhang, P. Chen, and P. Chen, “HARM: Hardware-
assisted continuous re-randomization for microcontrollers,” in 2022 IEEE eu-
ropean symposium on security and privacy (EuroS P), 2022.

[78] A. Fu, W. Ding, B. Kuang, Q. Li, W. Susilo, and Y. Zhang, “FH-CFI: Fine-
grained hardware-assisted control flow integrity for ARM-based IoT devices,”
Computers & Security, vol. 116, p. 102666, May 2022.

[79] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On
the effectiveness of address-space randomization,” in Proceedings of the 11th
ACM conference on Computer and communications security, ser. CCS ’04.
Association for Computing Machinery, Oct. 2004, pp. 298–307.

[80] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang, R. Jhala, and
D. Stefan, “FaCT: A Flexible, Constant-Time Programming Language,” in
2017 IEEE Cybersecurity Dev. SecDev, 2017, pp. 69–76.

[81] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A Verified Modern Cryptographic Library,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1789–1806.



60 REFERENCES

[82] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte,
T. Oliveira, H. Pacheco, B. Schmidt, and P.-Y. Strub, “Jasmin: High-
Assurance and High-Speed Cryptography,” in Proc. 2017 ACM SIGSAC Conf.
Comput. Commun. Secur., ser. CCS ’17. Association for Computing Machin-
ery, 2017, pp. 1807–1823.

[83] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida, “Constantine: Au-
tomatic Side-Channel Resistance Using Efficient Control and Data Flow Lin-
earization,” Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pp. 715–733, Nov. 2021.

[84] J. Cabrera Arteaga, O. Floros, O. Vera Perez, B. Baudry, and M. Monperrus,
“Crow: Code diversification for webassembly,” in MADWeb, NDSS 2021, 2021.

[85] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Ver-
ifying constant-time implementations,” in 25th USENIX security symposium
(USENIX security 16). Austin, TX: USENIX Association, Aug. 2016, pp.
53–70.

[86] X. Leroy, “Formal verification of a realistic compiler,” Communications of the
ACM, vol. 52, no. 7, pp. 107–115, Jul. 2009.

[87] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson, “Vale: Verifying {High-
Performance} Cryptographic Assembly Code,” in 26th USENIX Security Sym-
posium (USENIX Security 17), 2017, pp. 917–934.

[88] I. Bastys, M. Algehed, A. Sjösten, and A. Sabelfeld, “Secwasm: Information
flow control for webassembly,” in Static Analysis: 29th International Sympo-
sium, SAS 2022, Auckland, New Zealand, December 5–7, 2022, Proceedings.
Springer, 2022, pp. 74–103.

[89] H. Eldib and C. Wang, “Synthesis of Masking Countermeasures against Side
Channel Attacks,” in Comput. Aided Verification, ser. Lecture Notes in Com-
puter Science. Springer International Publishing, 2014, pp. 114–130.

[90] P. Gao, J. Zhang, F. Song, and C. Wang, “Verifying and Quantifying Side-
channel Resistance of Masked Software Implementations,” ACM Transactions
on Software Engineering and Methodology, vol. 28, no. 3, pp. 16:1–16:32, 2019.

[91] S. T. Vu, A. Cohen, K. Heydemann, A. de Grandmaison, and C. Guil-
lon, “Secure optimization through opaque observations,” arXiv preprint
arXiv:2101.06039, 2021.

[92] F. Besson, A. Dang, and T. Jensen, “Securing Compilation Against Memory
Probing,” in Proc. 13th Workshop Program. Lang. Anal. Secur., ser. PLAS
’18. Association for Computing Machinery, 2018, pp. 29–40.



REFERENCES 61

[93] L.-A. Daniel, S. Bardin, and T. Rezk, “Hunting the haunter-efficient relational
symbolic execution for spectre with haunted relse,” in NDSS 2021-Network
and Distributed Systems Security, 2021.





Part I

Included Publications

63





Appendix A

Publication 1

65



Constraint-Based Software Diversification for
Efficient Mitigation of Code-Reuse Attacks

Rodothea Myrsini Tsoupidi1, Roberto Castañeda Lozano2, and Benoit Baudry1

1 KTH Royal Institute of Technology, Sweden
{tsoupidi,baudry}@kth.se

2 University of Edinburgh, United Kingdom
roberto.castaneda@ed.ac.uk

Abstract. Modern software deployment process produces software that
is uniform, and hence vulnerable to large-scale code-reuse attacks. Com-
piler-based diversification improves the resilience and security of software
systems by automatically generating different assembly code versions of a
given program. Existing techniques are efficient but do not have a precise
control over the quality of the generated code variants.
This paper introduces Diversity by Construction (DivCon), a constraint-
based compiler approach to software diversification. Unlike previous ap-
proaches, DivCon allows users to control and adjust the conflicting goals
of diversity and code quality. A key enabler is the use of Large Neighbor-
hood Search (LNS) to generate highly diverse assembly code efficiently.
Experiments using two popular compiler benchmark suites confirm that
there is a trade-off between quality of each assembly code version and
diversity of the entire pool of versions. Our results show that DivCon
allows users to trade between these two properties by generating diverse
assembly code for a range of quality bounds. In particular, the experi-
ments show that DivCon is able to mitigate code-reuse attacks effectively
while delivering near-optimal code (< 10% optimality gap).
For constraint programming researchers and practitioners, this paper
demonstrates that LNS is a valuable technique for finding diverse solu-
tions. For security researchers and software engineers, DivCon extends
the scope of compiler-based diversification to performance-critical and
resource-constrained applications.

Keywords: compiler-based software diversification · code-reuse attacks
· constraint programming · embedded systems

1 Introduction

Good software development practices, such as code reuse [19], continuous deploy-
ment, and automatic updates contribute to the emergence of software monocul-
tures [3]. While such monocultures facilitate software distribution, bug reporting,
and software authentication, they also introduce serious risks related to the wide
spreading of attacks against all users that run identical software.



2 Rodothea Myrsini Tsoupidi, Roberto Castañeda Lozano, and Benoit Baudry

Software diversification is a method to mitigate the problems caused by uni-
formity. Similarly to biodiversity, software diversification improves the resilience
and security of a software system [2] by introducing diversity in it. Software di-
versification can be applied in different phases of the software development cycle,
i.e. during implementation, compilation, loading, execution, and more [20]. This
paper is concerned with compiler-based diversification, which automatically gen-
erates different assembly code versions from a single source program.

Modern compilers do not merely aim to generate correct code, but also code
that is of high quality. Existing compiler-based diversification techniques are
efficient and effective at diversifying assembly code [20] but do not have a precise
control over its quality and may produce unsatisfactory results. These techniques
(discussed in Section 5) are either based on randomizing heuristics or in high-
level superoptimization methods that do not capture accurately the quality of
the generated code.

This paper introduces Diversity by Construction (DivCon), a compiler-based
diversification approach that allows users to control and adjust the conflicting
goals of quality of each code version and diversity among all versions. DivCon
uses a Constraint Programming (CP)-based compiler backend to generate multi-
ple solutions corresponding to functionally equivalent program variants accord-
ing to an accurate code quality model. The backend models the input program,
the hardware architecture, and the compiler transformations as a constraint
problem, whose solution corresponds to assembly code for the input program.

The use of CP makes it possible to 1) control the quality of the generated
solutions by constraining the objective function, 2) introduce application-specific
constraints that restrict the diversified solutions, and 3) apply sophisticated
search procedures that are particularly suitable for diversification. In particular,
DivCon uses Large Neighborhood Search (LNS) [29], a popular metaheuristic in
multiple application domains, to generate highly diverse solutions efficiently.

Our experiments compiling 17 functions from two popular compiler bench-
mark suites to the MIPS32 architecture confirm that there is a trade-off between
code quality and diversity, and demonstrate that DivCon allows users to nav-
igate this conflict by generating diverse assembly code for a range of quality
bounds. In particular, the experiments show that DivCon is able to mitigate
code-reuse attacks effectively while guaranteeing a code quality of 10% within
optimality.

For constraint programming researchers and practitioners, this paper demon-
strates that LNS is a valuable technique for finding diverse solutions. For security
researchers and software engineers, DivCon extends the scope of compiler-based
diversification to performance-critical and resource-constrained applications, and
provides a solid step towards secure-by-construction software.

Contributions. To summarize, this paper:
– proposes a CP-based technique for compiler-based, quality-aware software

diversification (Section 3);
– shows that LNS is a promising technique for generating highly diverse solu-

tions efficiently (Section 4.3);



Constraint-Based Software Diversification Against Code-Reuse Attacks 3

1 0x9d001408 : . . .
2 0x9d00140c : lw $s2 , 4($sp)
3 0x9d001410 : lw $s4 , 0($sp)
4 0x9d001414 : jr $t9
5 0x9d001418 : addiu $sp , $sp , 16

(a) Original gadget.

1 0x9d001408 : lw $s2 , 4($sp)
2 0x9d00140c : nop
3 0x9d001410 : lw $s4 , 0($sp)
4 0x9d001414 : jr $t9
5 0x9d001418 : addiu $sp , $sp , 16

(b) Diversified gadget.

Fig. 1: Example gadget diversification in MIPS32 assembly code

– quantifies the trade-off between code quality and diversity (Section 4.4); and
– demonstrates that DivCon mitigates code-reuse attacks effectively while pre-

serving high code quality (Section 4.5).

2 Background

This section describes code-reuse attacks (Section 2.1), diversification approaches
in CP (Section 2.2), and combinatorial compiler backends (Section 2.3).

2.1 Code-reuse Attacks

Code-reuse attacks take advantage of memory vulnerabilities, such as buffer
overflows, to reuse program code for malicious purposes. More specifically, code-
reuse attacks insert data into the program memory to affect the control flow of
the program and execute code that is valid but unintended.

Jump-Oriented Programming (JOP)3 is a code-reuse attack [7,4] that com-
bines different code snippets from the original program code to form a Turing
complete language for attackers. These code snippets terminate with a branch
instruction. The building blocks of a JOP attack are gadgets: meta-instructions
that consist of one or multiple code snippets with specific semantics. Figure 1a
shows a JOP gadget found by the ROPgadget tool [27] in a MIPS32 binary. As-
suming that the attacker controls the stack, lines 2 and 3 load attacker data in
registers $s2 and $s4, respectively. Then, line 4 jumps to the address of register
$t9. The last instruction (line 5) is placed in a delay slot and hence it is exe-
cuted before the jump [31]. The semantics of this gadget depends on the attack
payload and might be to load a value to register $s2 or $s4. Then, the program
jumps to the next gadget that resides at the stack address of $t9.

Statically designed JOP attacks use the absolute binary addresses for in-
stalling the attack payload. Hence, a simple change in the instruction schedule
of the program as in Figure 1b prevents a JOP attack designed for Figure 1a.
An attacker that designs an attack based on the binary of the original program
assumes the presence of a gadget (Figure 1a) at position 0x9d00140c. However,
in the diversified version, address 0x9d00140c does not start with the initial lw
3 This paper focuses on JOP due to the characteristics of MIPS32, but could be gener-

alized to other code-reuse attacks such as Return-Oriented Programming (ROP) [28].



4 Rodothea Myrsini Tsoupidi, Roberto Castañeda Lozano, and Benoit Baudry

instruction of Figure 1a, and by the end of the execution of the gadget, register
$s2 does not contain the attacker data. In this way, diversification can break the
semantics of the gadget and mitigate an attack against the diversified code.

2.2 Diversity in Constraint Programming

While typical CP applications aim to discover either some solution or the optimal
solution, some applications require finding diverse solutions for various purposes.

Hebrard et al. [13] introduce the MaxDiversekSet problem, which consists
in finding the most diverse set of k solutions, and propose an exact and an
incremental algorithm for solving it. The exact algorithm does not scale to a
large number of solutions [32,16]. The incremental algorithm selects solutions
iteratively by solving a distance maximization problem.

Automatic Generation of Architectural Tests (ATGP) is an application of
CP that requires generating many diverse solutions. Van Hentenryck et al. [32]
model ATGP as a MaxDiversekSet problem and solve it using the incremental
algorithm of Hebrard et. al. Due to the large number of diverse solutions required
(50-100), Van Hentenryck et al. replace the maximization step with local search.

In software diversity, solution quality is of paramount importance. In gen-
eral, earlier CP approaches to diversity are concerned with satisfiability only.
An exception is the approach of Petit et al. [26]. This approach modifies the
objective function for assessing both solution quality and solution diversity, but
does not scale to the large number of solutions required by software diversity.
Ingmar et al. [16] propose a generic framework for modeling diversity in CP. For
tackling the quality-diversity trade-off, they propose constraining the objective
function with the optimal (or best known) cost o. DivCon applies this approach
by allowing solutions p% worse than o, where p is configurable.

2.3 Compiler Optimization as a Combinatorial Problem

A Constraint Satisfaction Problem (CSP) is a problem specification P = ⟨V,U,C⟩,
where V are the problem variables, U is the domain of the variables, and C the
constraints among the variables. A Constraint Optimization Problem (COP),
P = ⟨V,U,C,O⟩, consists of a CSP and an objective function O. The goal of a
COP is to find a solution that optimizes O.

Compilers are programs that generate low-level assembly code, typically op-
timized for speed or size, from higher-level source code. A compilation process
can be modeled as a COP by letting V be the decisions taken during the transla-
tion, C be the constraints imposed by the program semantics and the hardware
resources, and O be the cost of the generated code.

Compiler backends generate low-level assembly code from an Intermediate
Representation (IR), a program representation that is independent of both the
source and the target language. Figure 2 shows the high-level view of a com-
binatorial compiler backend. A combinatorial compiler backend takes as input
the IR of a program, generates and solves a COP, and outputs the optimized
low-level assembly code described by the solution to the COP.



Constraint-Based Software Diversification Against Code-Reuse Attacks 5

factorial.c

Compiler
Frontend

optimal

Combinatorial Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

source
code IR

optimal solution

factorial.c

Compiler
Frontend

optimal

Combinatorial Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

source
code IR

optimal solution
Fig. 2: High-level view of a combinatorial compiler backend

This paper assumes that programs at the IR level are represented by their
Control-Flow Graph (CFG). A CFG is a representation of the possible execution
paths of a program, where each node corresponds to a basic block and edges
correspond to intra-block jumps. A basic block, in its turn, is a set of abstract
instructions (hereafter just instructions) with no branches besides the end of the
block. Each instruction is associated with a set of operands characterizing its
input and output data. Typical decision variables V of a combinatorial compiler
backend are the issue cycle ci ∈ N0 of each instruction i, the processor instruction
mi ∈ N0 that implements each instruction i, and the processor register ro ∈ N0

assigned to each operand o.
DivCon aims at mitigating code-reuse attacks. Therefore, DivCon considers

the order of the instructions in the final binary, which directly affects the feasi-
bility of code-reuse attacks (see Figures 1a and 1b). For this reason, the diver-
sification model uses the issue cycle sequence of instructions, c = {c0, c1, ..., cn},
to characterize the diversity among different solutions.

Figure 3a shows an implementation of the factorial function in C where each
basic block is highlighted. Figure 3b shows the IR of the program. The exam-
ple IR contains 10 instructions in three basic blocks: bb.0, bb.1, and bb.2. bb.0
corresponds to initializations, where $a0 holds the function argument n and t1
corresponds to variable f. bb.1 computes the factorial in a loop by accumulating
the result in t1. bb.2 stores the result to $v0 and returns. Some instructions in
the example are interdependent, which leads to serialization of the instruction
schedule. For example, beq (6) consumes data (t3) defined by slti (4) and hence
needs to be scheduled later. Instruction dependencies limit the amount of pos-
sible assembly code versions and can restrict diversity significantly, as seen in
Section 4.3. Finally, Figure 3c shows the arrangement of the issue cycle variables
in the constraint model used by the combinatorial compiler backend.

3 DivCon

This section introduces DivCon, a software diversification method that uses a
combinatorial compiler backend to generate program variants. Figure 4 shows a
high-level view of the diversification process. DivCon uses 1) the optimal solution
to start the search for diversification and 2) the cost of the optimal solution to
restrict the variants within a maximum gap from the optimal. Subsequently,
DivCon generates a number of solutions to the CSP that correspond to diverse
program variants.



6 Rodothea Myrsini Tsoupidi, Roberto Castañeda Lozano, and Benoit Baudry

int factor ia l ( int n) {

int f ;
f = 1;

while(n > 0) {
f ∗= n−−;

}

return f ;

}

(a) C code

0: t1 ← $a0
1: t2 ← 1
2: blez t1, bb.2

3: t2 ← mul t2, t1
4: t3 ← s l t i t1, 2
5: t1 ← addi t1, −1
6: beq t3, %0, bb.1
7: b bb.2

8: $v0 ← t2
9: jr $ra

bb.0

bb.1

bb.2

(b) IR

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

bb.0

bb.1

bb.2

(c) Issue cycles

Fig. 3: Factorial function example

factorial.c

Compiler
Frontend

optimal

Comb. Compiler Backend

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

...

source
code

optimal
solution

factorial.c

Compiler
Frontend

optimal

Comb. Compiler Backend

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

...

source
code

optimal
solution

Fig. 4: High-level view of DivCon

The rest of this section describes the diversification approach of DivCon.
Section 3.1 formulates the diversification problem in terms of the constraint
model of a combinatorial compiler backend, Section 3.2 defines the distance
measures, and finally, Section 3.3 describes the search strategy for generating
program variants.

3.1 Problem Description

Let P = ⟨V,U,C⟩ be the compiler backend CSP for the program under compila-
tion, O be the objective function, and o be the cost of the optimal or best known
solution to the COP, ⟨V,U,C,O⟩. Let δ be a function that measures the distance
between two solutions of P (two such functions are defined in Section 3.2). Let
h ∈ N be the minimum pairwise distance and p ∈ R≥0 be the maximum opti-
mality gap specified by the user. Our problem is to find a subset of the solutions
to the CSP, S ⊆ sol(P ), such that ∀s1, s2 ∈ S . s1 ̸= s2 =⇒ δ(s1, s2) ≥ h and
∀s ∈ S .O(s) ≤ (1 + p) · o.

To solve the above problem, DivCon employs the incremental algorithm listed
in Algorithm 1. Starting with the optimal solution yopt, the algorithm adds the
distance constraint for yopt and the optimality constraint with o = yopt(O) (line



Constraint-Based Software Diversification Against Code-Reuse Attacks 7

2). Notation δ(y) is used instead of δ(y, s) | ∀s ∈ sol(⟨V,U,C ′⟩) for readability.
While the termination condition is not fulfilled (line 3), the algorithm uses LNS
as described in Section 3.3 to find the next solution y (line 4), adds the next
solution to the solution set S (line 5), and updates the distance constraints based
on the latest solution (line 6). When the termination condition is satisfied, the
algorithm returns the set of solutions S corresponding to diversified assembly
code variants.

Algorithm 1: Incremental algorithm for generating diverse solutions
1 S ← {yopt } , y ← yopt ,
2 C′ ← C ∪ {δ(yopt) ≥ h , O(V ) ≤ (1 + p) · o}
3 while not term_cond ( ) // e . g . | S | > k ∨ t ime_limit ()
4 y ← solveLNS ( relax (y ) , ⟨V,U,C′⟩)
5 S ← S ∪ {y}
6 C′ ← C′ ∪ {δ(y) ≥ h}

Figure 5 shows two MIPS32 variants of the factorial example (Figure 3),
which correspond to two solutions of DivCon. The variants differ in two aspects:
first, the beqz instruction is issued one cycle later in Figure 5b than in Figure 5a,
and second, the temporary variable t3 (see Figure 3) is assigned to different
MIPS32 registers ($t0 and $t1).

3.2 Distance Measures

This section defines two alternative distance measures: Hamming Distance (HD)
and Levenshtein Distance (LD). Both distances operate on the schedule of the
instructions, i.e. the order in which the instructions are issued in the CPU.

Hamming Distance (HD). HD is the Hamming distance [12] between the issue
cycle variables of two solutions. Given two solutions s, s′ ∈ sol(P ):

δHD(s, s′) =
n∑

i=0

(s(ci) ̸= s′(ci)), (1)

1 bb. 0 : blez $a0 , bb.2
2 addiu $v0 , $zero , 1
3 bb. 1 : mul $v0 , $v0 , $a0
4 s l t i $t0 , $a0 , 2
5 beqz $t0 , bb.1
6 addi $a0 , $a0 , −1
7 bb. 2 : jr $ra
8 nop

(a) Variant 1.

1 bb. 0 : blez $a0 , bb.2
2 addiu $v0 , $zero , 1
3 bb. 1 : mul $v0 , $v0 , $a0
4 s l t i $t1 , $a0 , 2
5 nop
6 beqz $t1 , bb.1
7 addi $a0 , $a0 , −1
8 bb. 2 : jr $ra
9 nop

(b) Variant 2.

Fig. 5: Two MIPS32 variants of the factorial example in Figure 3



8 Rodothea Myrsini Tsoupidi, Roberto Castañeda Lozano, and Benoit Baudry

where n is the maximum number of instructions.
Consider Figure 1b, a diversified version of the gadget in Figure 1a. The

only instruction that differs from Figure 1a is the instruction at line 1 that is
issued one cycle before. The two examples have a HD of one, which in this case
is enough for breaking the functionality of the original gadget (see Section 2.1).

Levenshtein Distance (LD). LD (or edit distance) measures the minimum num-
ber of edits, i.e. insertions, deletions, and replacements, that are necessary for
transforming one instruction schedule to another. Compared to HD, which con-
siders only replacements, LD also considers insertions and deletions. To under-
stand this effect, consider Figure 5. The two gadgets differ only by one nop
operation but HD gives a distance of three, whereas LD gives one, which is more
accurate. LD takes ordered vectors as input, and thus requires an ordered repre-
sentation (as opposed to a detailed schedule) of the instructions. Therefore, LD
uses vector c−1 = channel(c), a sequence of instructions ordered by their issue
cycle. Given two solutions s, s′ ∈ sol(P ):

δLD(s, s′) = levenshtein_distance(s(c−1), s′(c−1)), (2)

where levenshtein_distance is the Wagner–Fischer algorithm [33] with time
complexity O(nm), where n and m are the lengths of the two sequences.

3.3 Search

Unlike previous CP approaches to diversity, DivCon employs Large Neighbor-
hood Search (LNS) for diversification. LNS is a metaheuristic that defines a
neighborhood, in which search looks for better solutions, or, in our case, dif-
ferent solutions. The definition of the neighborhood is through a destroy and
a repair function. The destroy function unassigns a subset of the variables in
a given solution and the repair function finds a new solution by assigning new
values to the destroyed variables.

In DivCon, the algorithm starts with the optimal solution of the combi-
natorial compiler backend. Subsequently, it destroys a part of the variables and
continues with the model’s branching strategy to find the next solution, applying
a restart after a given number of failures. LNS uses the concept of neighborhood,
i.e. the variables that LNS may destroy at every restart. To improve diversity,
the neighborhood for DivCon consists of all decision variables, i.e. the issue cy-
cles c, the instruction implementations m, and the registers r. Furthermore, LNS
depends on a branching strategy to guide the repair search. To improve security
and allow LNS to select diverse paths after every restart, DivCon employs a
random variable-value selection branching strategy as described in Table 1b.

4 Evaluation

The evaluation of DivCon addresses four main questions:



Constraint-Based Software Diversification Against Code-Reuse Attacks 9

– RQ1. What is the scalability of the distance measures in generating multiple
program variants? Here, we evaluate which of the distance measures is the
most appropriate for software diversification.

– RQ2. How effective and how scalable is LNS for code diversification? Here,
we investigate LNS as an alternative approach to diversity in CP.

– RQ3. How does code quality relate to code diversity and what are the in-
volved trade-offs?

– RQ4. How effective is DivCon at mitigating code-reuse attacks? This ques-
tion is the main application of CP-based diversification in this work.

4.1 Experimental Setup

Implementation. DivCon is implemented as an extension of Unison [6], and is
available at https://github.com/romits800/divcon. Unison implements two
backend transformations: instruction scheduling and register allocation. DivCon
employs Unison’s solver portfolio that includes Gecode v6.2 [11] and Chuffed
v0.10.3 [8] to find optimal solutions, and Gecode v6.2 only for diversification.
The LLVM compiler [21] is used as a front-end and IR-level optimizer.

Benchmark functions and platform. The evaluation uses 17 functions sampled
randomly from MediaBench [22] and SPEC CPU2006 [30], two benchmark suites
widely employed in embedded and general-purpose compiler research. The size
of the functions is limited to between 10 and 30 instructions (with a median of 20
instructions) to keep the evaluation of all methods and distance measures feasible
regardless of their computational cost. Table 2 lists the ID, application, name,
basic blocks (b), and instructions (i) of each sampled function. The functions are
compiled to MIPS32 assembly code. MIPS32 is a popular architecture within
embedded systems and the security-critical Internet of Things [1].

Host platform. All experiments run on an Intel®Core™i9-9920X processor at
3.50GHz with 64GB of RAM running Debian GNU/Linux 10 (buster). Each of
the experiments runs for 20 random seeds. The results show the mean value and
the standard deviation from these experiments. The available virtual memory
for each of the executions is 10GB. The experiments for different random seeds
run in parallel (5 seeds at a time), with two unique cores available for every seed
for overheating reasons. DivCon runs as a sequential program.

Table 1: Original and Random branching strategies
(a) Original branching strategy.

Variable Var. Selection Value Selection
ci in order min. val first
mi in order min. val first
ro in order randomly

(b) Random branching strategy.
Variable Var. Selection Value Selection

ci randomly randomly
mi randomly randomly
ro randomly randomly



10 Rodothea Myrsini Tsoupidi, Roberto Castañeda Lozano, and Benoit Baudry

Table 2: Benchmark functions

ID app function name b i
b1 sphinx3 ptmr_init 1 10
b2 gcc ceil_log2 1 14
b3 mesa glIndexd 1 14
b4 h264ref symbol2uvlc 1 15
b5 gobmk autohelperowl_defen.. 1 23
b6 mesa glVertex2i 1 23
b7 hmmer AllocFancyAli 1 25
b8 gobmk autohelperowl_vital.. 1 27
b9 gobmk autohelperpat1088 1 29
b10 gobmk autohelperowl_attac.. 1 30
b11 gobmk get_last_player 3 13
b12 h264ref UpdateRandomAccess 3 16
b13 gcc xexit 3 17
b14 gcc unsigned_condition 3 24
b15 sphinx3 glist_tail 4 10
b16 gcc get_frame_alias_set 5 20
b17 gcc parms_set 5 25

Table 3: Scalability of δHD, δLD

ID δHD δLD

t(s) num t(s) num
b1 0.1±0.2 26 131.2±131.4 26
b2 1.0±0.1 200 - 68
b3 1.1±0.1 200 - 58
b4 0.7±0.0 200 - 73
b5 2.3±0.3 200 - 38
b6 2.5±0.2 200 - 35
b7 2.0±0.3 200 - 37
b8 3.8±0.8 200 - 35
b9 4.0±0.6 200 - 28
b10 4.5±0.7 200 - 27
b11 1.3±0.1 200 - 56
b12 1.1±0.2 200 - 47
b13 0.8±0.1 200 - 91
b14 1.8±0.3 200 - 27
b15 1.7±0.2 200 - 60
b16 2.7±0.4 200 - 31
b17 1.6±0.2 200 - 35

Algorithm Configuration. The experiments focus on speed optimization and aim
to generate 200 variants within a timeout. Parameter h in Algorithm 1 is set
to one because even small distance between variants is able to break gadgets
(see Figure 1). LNS uses restart-based search with a limit of 500 failures, and
a relax rate of 70%. The relax rate is the probability that LNS destroys a vari-
able at every restart, which affects the distance between two subsequent solu-
tions. A higher relax rate increases diversity but requires more solving effort.
We have found experimentally that 70% is an adequate balance between the
two. All experiments are available at https://github.com/romits800/divcon_
experiments.

4.2 RQ1. Scalability of the Distance Measures

The ability to generate a large number of variants is paramount for software
diversification. This section compares the distance measures introduced in Sec-
tion 3.2 with regards to scalability.

Table 3 presents the results of the distance evaluation, where a time limit of
10 minutes and optimality gap of p = 10% are used. For each distance measure
(δHD and δLD) the table shows the diversification time t, in seconds (or “-” if
the algorithm is not able to generate 200 variants) and the number of generated
variants num within the time limit.

The results show that for δHD, DivCon is able to generate 200 variants for all
benchmarks except b1, which has exactly 26 variants. The diversification time
for δHD is less than 5 seconds for all benchmarks. Distance δLD, on the other
hand, is not able to generate 200 variants for any of the benchmarks within the
time limit. This poor scalability of δLD is due to the quadratic complexity of its
implementation [33], whereas HD can be implemented linearly. Consequently,
the rest of the evaluation uses δHD.



Constraint-Based Software Diversification Against Code-Reuse Attacks 11

4.3 RQ2. Scalability and Diversification Effectiveness of LNS

This section evaluates the diversification effectiveness and scalability of LNS
compared to incremental MaxDiversekSet (where the first solution is found
randomly and the maximization step uses the branching strategy from Table 1a)
and Random Search (RS) (which uses the branching strategy from Table 1b).

To measure the diversification effectiveness of these methods, the evaluation
uses the relative pairwise distance of the solutions. Given a set of solutions
S and a distance measure δ, the pairwise distance d of the variants in S is
d(δ, S) =

∑|S|
i=0

∑|S|
j>i δ(si, sj) /

(|S|
2

)
. The larger this distance, the more diverse

the solutions are, and thus, diversification is more effective. Table 4 shows the
pairwise distance d and diversification time t for each benchmark and method,
where the experiment uses a time limit of 30 minutes and optimality gap of
p = 10%. The best values of d (larger) and t (lower) are marked in bold for
the completed experiments, whereas incomplete experiments are highlighted in
italic and their number of variants in parenthesis.

Table 4: Distance and Scalability of LNS with RS and MaxDiversekSet

ID MaxDiversekSet RS LNS (0.7)
d t(s) d t(s) d t(s)

b1 4.1±0.0 0.2±0.0 (26) 4.1±0.0 0.0±0.0 (26) 4.1±0.0 0.1±0.2 (26)
b2 10.8±0.0 761.8±10.1 6.4±0.2 0.6±0.1 8.6±0.6 1.0±0.1
b3 14.6±0.0 - (21) 5.8±0.1 0.6±0.1 10.8±0.8 1.0±0.1
b4 14.4±0.0 - (19) 4.3±0.1 0.2±0.0 12.1±0.3 0.6±0.0
b5 22.0±0.0 - (2) 4.3±0.3 0.5±0.0 16.1±1.1 2.2±0.3
b6 22.9±0.4 - (2) 5.3±0.0 1.0±0.1 16.4±0.6 2.4±0.2
b7 24.9±0.1 - (6) 4.5±0.2 0.4±0.0 18.1±1.2 1.9±0.3
b8 24.8±0.4 - (2) 6.5±0.2 3.5±0.5 17.2±0.9 3.8±0.8
b9 26.0±0.0 - (2) 4.2±0.3 0.4±0.0 19.8±0.7 3.9±0.6
b10 28.0±0.0 - (2) 6.0±0.0 5.3±1.0 20.1±1.1 4.5±0.7
b11 13.8±0.0 356.9±8.2 5.3±0.1 0.2±0.0 10.1±1.0 1.2±0.1
b12 21.5±0.1 - (5) 6.4±0.9 0.2±0.0 14.9±1.0 1.0±0.2
b13 17.4±0.0 - (122) 6.7±0.0 0.9±0.1 12.0±0.9 0.7±0.1
b14 30.1±0.0 - (20) 7.5±0.2 0.2±0.0 24.9±0.7 1.8±0.3
b15 - - 2.6±0.3 0.1±0.0 20.2±0.5 1.6±0.2
b16 - - 5.6±0.4 0.3±0.0 21.3±0.8 2.6±0.4
b17 - - 2.9±0.1 - (91) 28.1±1.5 1.6±0.2

The scalability results (t(s)) show that RS and LNS are scalable (generate the
maximum 200 variants for almost all benchmarks), whereas MaxDiversekSet
scales poorly (cannot generate 200 variants for any benchmark but b2 and b11).
Both b2 and b11 have a small search space (few, highly interdependent in-
structions), which leads to restricted diversity but facilitates solving. For b1,
all instructions are interdependent on each other, which forces a linear sched-
ule and results in only 26 possible variants (given p = 10%). On the other
end, MaxDiversekSet is not able to find any variants for b15, b16, and b17.
These benchmarks have many basic blocks resulting in a more complex objec-
tive function. For the largest benchmark (b17), only LNS is able to scale up to
200 solutions. LNS is generally slower than RS, but for both LNS and RS all
benchmarks have a diversification time less than six seconds.

The diversity results (d) show that LNS is more effective at diversifying than
RS. The improvement of LNS over RS ranges from 35% (for b2) to 675% (for



12 Rodothea Myrsini Tsoupidi, Roberto Castañeda Lozano, and Benoit Baudry

b15). In the two cases where MaxDiversekSet terminates (benchmarks b2 and
b11), it generates the most diverse code, as can be expected.

In summary, LNS offers an attractive balance between scalability and diver-
sification effectiveness: it is close in scalability to, and sometimes improves, the
overly fastest method (RS), but it is significantly and consistently more effective
at diversifying code.

4.4 RQ3. Trade-off Between Code Quality and Diversity

A key advantage of using a CP-based compiler approach for software diversity is
the ability to control the quality of the generated solutions. This ability enables
control over the relation between the quality of each individual solution and the
diversity of the entire pool of solutions. Insisting in optimality limits the num-
ber of possible diversified variants and their pairwise distance, whereas relaxing
optimality allows higher diversity.

Table 5 shows the pairwise distance d (defined in Section 4.3), and the num-
ber of generated variants num, for all benchmarks and different values of the
optimality gap p ∈{0%, 5%, 10%, 20%}. LNS is used with a time limit of 10
minutes. The best values of d are marked in bold.

Table 5: Solution diversity for different optimality gap values

ID 0% 5% 10% 20%
d num d num d num d num

b1 - - - - 4.1±0.0 26 6.5±0.1 200
b2 3.5±0.0 9 6.7±0.4 200 8.6±0.6 200 10.0±0.8 200
b3 7.0±0.1 200 9.4±0.5 200 10.8±0.8 200 14.8±1.0 200
b4 7.8±0.2 200 10.1±0.3 200 12.1±0.3 200 14.0±0.2 200
b5 8.4±0.1 200 11.9±0.7 200 16.1±1.1 200 19.7±0.6 200
b6 10.8±0.1 200 14.7±0.4 200 16.4±0.6 200 20.9±0.8 200
b7 11.3±0.3 200 13.8±0.7 200 18.1±1.2 200 22.8±1.1 200
b8 11.0±0.1 200 13.6±0.6 200 17.2±0.9 200 22.4±1.1 200
b9 12.7±0.1 200 17.7±0.8 200 19.8±0.7 200 24.4±0.6 200
b10 13.7±0.1 200 18.1±0.9 200 20.1±1.1 200 26.3±0.6 200
b11 2.0±0.0 4 6.6±0.1 200 10.1±1.0 200 14.2±0.9 200
b12 3.8±0.0 10 10.3±1.2 200 14.9±1.0 200 19.8±1.0 200
b13 2.1±1.3 4 10.1±0.9 200 12.0±0.9 200 15.7±1.2 200
b14 3.6±0.0 24 21.0±0.6 200 24.9±0.7 200 29.0±0.5 200
b15 2.4±0.0 8 15.6±0.6 200 20.2±0.5 200 23.5±1.4 200
b16 4.1±0.0 44 15.1±1.1 200 21.3±0.8 200 30.7±0.9 200
b17 7.5±0.2 200 20.3±1.4 200 28.1±1.5 200 38.4±0.9 200

The first interesting observation is that even with no degradation of quality
(p = 0%), DivCon is able to generate a large number of variants for a sig-
nificant fraction of the benchmarks. These include functions with a relatively
large solution space, typically with a few large basic blocks where instructions
are relatively independent of each other (b3-b10 and b17). On the other hand,
benchmarks with small basic blocks and many instruction dependencies (b1, b2,
and b11-b16) provide fewer options for diversification, which results in a limited
number of optimal variants.

Second, we observe that as soon as we slightly relax the constraint over
optimality (p = 5%), diversity radiates and DivCon generates 200 variants for all



Constraint-Based Software Diversification Against Code-Reuse Attacks 13

benchmarks except b1. Then, the more we increase the optimality gap, the larger
the diversification space grows and the distance between the variants increases.
Table 5 illustrates one of the key contributions of DivCon: the ability to explore
the trade-off between optimal solutions and highly diverse solutions.

In summary, depending on the characteristics of the compiled code, it is
possible to generate a large number of variants without sacrificing optimality,
and the code quality can be adjusted to further improve diversity if required by
the targeted application.

4.5 RQ4. Code-Reuse Mitigation Effectiveness

Software Diversity has various applications in security, including mitigating code-
reuse attacks. To measure the level of mitigation that DivCon achieves, we assess
the gadget survival rate srate(si, sj) between two variants si, sj ∈ S, where
S is the set of generated variants. This metric determines how many of the
gadgets of variant si appear at the same position on the other variant sj , that
is srate(si, sj) = |gad(si) − gad(sj)| / |gad(si)|, where gad(si) are the gadgets
in solution si. The procedure for computing srate(si, sj) is as follows: 1) run
ROPgadget [27] to find the set of gadgets gad(si) in solution si, and 2) for every
g ∈ gad(si), check whether there exists a gadget identical to g at the same
address of sj . This comparison is syntactic after removing all nop instructions.

This section compares the srate for all permutations of pairs in S, for all
benchmarks, and for different values of the optimality gap using a time limit
of 10 minutes. Low srate corresponds to higher mitigation effectiveness because
code-reuse attacks based on gadgets in one variant have lower chances of locating
the same gadgets in the other variants (see Figure 1).

Table 6 summarizes the gadget survival distribution for all benchmarks and
different values of the optimality gap (0%, 5%, 10%, and 20%). Due to its skew-
ness, the distribution of srate is represented as a histogram with four buckets
(0%, (0%, 10%], (10%,40%], and (40%, 100%]) rather than summarized using
common statistical measures. Here the best is a srate(si, sj) of 0%, which means
that sj does not contain any gadgets that exist in si, whereas a srate(si, sj) in
range (40%,100%] means that sj shares more than 40% of the gadgets of si. The
values in bold correspond to the mode(s) of the histogram.

First, we notice that DivCon can generate some pairs of variants that share
no gadget, even without relaxing the constraint of optimality (p = 0%). This
indicates that the pareto front of optimal code naturally includes software diver-
sity that is good for security. Second, the results show that this effectiveness can
be further increased by relaxing the constraint on code quality, with diminish-
ing returns beyond p = 10%. For p = 0%, there are 10 benchmarks dominated
by a 0% survival rate, whereas there are 7 benchmarks dominated by a weak
10%−40%-survival rate. The latter are still considered vulnerable to code-reuse
attacks. However, increasing the optimality gap to just p = 5% makes 0% sur-
vival rate the dominating bucket for all benchmarks, and further increasing the
gap to 10% and 20% increases significantly the number of pairs where no single



14 Rodothea Myrsini Tsoupidi, Roberto Castañeda Lozano, and Benoit Baudry

Table 6: Gadget survival rate for different optimality gap values

ID 0% 5% 10% 20%
=0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num

b1 - - - - - - - - - - 84 3 3 10 26 94 4 2 1 200
b2 - - 69 31 9 60 12 23 4 200 76 11 12 1 200 81 9 10 - 200
b3 66 15 18 1 200 71 14 15 1 200 73 13 13 1 200 77 14 9 - 200
b4 94 6 - - 200 96 4 - - 200 96 4 - - 200 98 2 - - 200
b5 90 1 9 - 200 93 2 5 - 200 95 2 3 - 200 95 3 2 - 200
b6 88 5 7 1 200 89 5 6 - 200 90 4 6 - 200 91 4 5 - 200
b7 48 1 48 3 200 74 5 21 1 200 83 6 11 - 200 89 6 5 - 200
b8 46 - 51 3 200 57 4 36 2 200 74 3 21 1 200 81 4 14 1 200
b9 42 - 56 2 200 66 9 24 1 200 73 8 18 - 200 83 7 9 - 200

b10 47 - 50 3 200 65 2 30 2 200 73 4 22 1 200 82 5 13 1 200
b11 38 - 61 1 4 66 3 31 - 200 68 9 23 - 200 83 7 10 - 200
b12 94 - 5 1 10 99 1 - - 200 99 - - - 200 99 1 - - 200
b13 43 9 34 14 4 69 20 11 - 194 69 21 10 - 200 71 19 10 - 200
b14 - - 78 22 24 60 23 17 - 200 63 22 15 - 200 70 19 11 - 200
b15 41 53 5 - 8 97 2 1 - 200 98 1 1 - 200 98 1 1 - 200
b16 64 28 6 - 44 76 21 2 - 200 82 17 1 - 200 90 9 1 - 200
b17 33 66 1 - 200 61 39 - - 200 75 25 - - 200 87 13 - - 200

gadget is shared. For example, at p = 10% the rate of pairs that do not share
any gadgets ranges from 63% (b14) to 99% (b12).

Related approaches (discussed in Section 5) report the average srate across all
pairs for different benchmark sets. Pappas et al.’s zero-cost approach [25] achieves
an average srate between 74%− 83% without code degradation, comparable to
DivCon’s 41%−99% at p = 0%. Homescu et al.’s statistical approach [15] reports
an average srate between 82% − 100% with a code degradation of less than
5%, comparable to DivCon’s 83% − 100% at p = 5%. Both approaches report
results on larger code bases that exhibit more opportunities for diversification.
We expect that DivCon would achieve higher overall survival rates on these code
bases compared to the benchmarks used in this paper.

5 Related Work

There are many approaches to software diversification against cyberattacks. The
majority apply randomized transformations at different stages of the software
development, while a few exceptions use search-based techniques [20]. This sec-
tion focuses on quality-aware software diversification approaches.

Superdiversifier [17] is a search-based approach for software diversification
against cyberattacks. Given an initial instruction sequence, the algorithm gen-
erates a random combination of the available instructions and performs a ver-
ification test to quickly reject non equivalent instruction sequences. For each
non-rejected sequence, the algorithm checks semantic equivalence between the
original and the generated instruction sequences using a SAT solver. Superdi-
versifier affects the code execution time and size by controlling the length of the
generated sequence. Along the same lines, Lundquist et al. [24,23] use program
synthesis for generating program variants against cyberattacks, but no results



Constraint-Based Software Diversification Against Code-Reuse Attacks 15

are available yet. In comparison, DivCon uses a combinatorial compiler back-
end that measures the code quality using a more accurate cost model that also
considers other aspects, such as execution frequencies.

Most diversification approaches use randomized transformations to gener-
ate multiple program variants [20]. Unlike DivCon, the majority of these ap-
proaches do not control the quality of the generated variants during diversifica-
tion but rather evaluate it afterwards [10,34,18,14,5,9]. However, there are a few
approaches that control the code quality during randomization.

Some compiler-based diversification approaches restrict the set of program
transformations to control the quality of the generated code [9,25]. For exam-
ple, Pappas et al. [25] perform software diversification at the binary level and
apply three zero-cost transformations: register randomization, instruction sched-
ule randomization, and function shuffling. In contrast, DivCon’s combinatorial
approach allows it to control the aggressiveness and potential cost of its trans-
formations: a cost overhead limit of 0% forces DivCon to apply only zero-cost
transformations; a larger limit allows DivCon to apply more aggressive transfor-
mations, potentially leading to higher diversity.

Homescu et al. [15] perform only garbage (nop) insertion, and use a profile-
guided approach to reduce the overhead. To do this, they control the nop inser-
tion probability based on the execution frequency of different code sections. In
contrast, DivCon’s cost model captures different execution frequencies, which al-
lows it to perform more aggressive transformations in non-critical code sections.

6 Conclusion and Future Work

This paper introduces DivCon, a CP approach to compiler-based, quality-aware
software diversification against code-reuse attacks. Our experiments show that
LNS is a promising technique for a CP-based exploration of the space of diverse
program, with a fine-grained control on the trade-off between code quality and
diversity. In particular, we show that the set of optimal solutions naturally con-
tains a set of diverse solutions, which increases significantly when relaxing the
constraint of optimality. Our experiments demonstrate that the diverse solutions
generated by DivCon are effective to mitigate code-reuse attacks.

Future work includes investigating different distance measures to further re-
duce the gadget survival rate, improving the overall scalability of DivCon in the
face of larger programs and larger values of parameter k, and examining the
effectiveness of DivCon against an actual code-reuse exploit.

Acknowledgments. We would like to give a special acknowledgment to Chris-
tian Schulte, for his critical contribution at the early stages of this work. Al-
though no longer with us, Christian continues to inspire his students and col-
leagues with his lively character, enthusiasm, deep knowledge and understanding.
We would also like to thank Linnea Ingmar and the anonymous reviewers for
their useful feedback, and Oscar Eriksson for proof reading.



16 Rodothea Myrsini Tsoupidi, Roberto Castañeda Lozano, and Benoit Baudry

References
1. Alaba, F.A., Othman, M., Hashem, I.A.T., Alotaibi, F.: Internet of Things security:

A survey. Journal of Network and Computer Applications 88, 10–28 (Jun 2017).
https://doi.org/10.1016/j.jnca.2017.04.002

2. Baudry, B., Monperrus, M.: The Multiple Facets of Software Diversity: Recent
Developments in Year 2000 and Beyond. ACM Comput. Surv. 48(1), 16:1–16:26
(Sep 2015). https://doi.org/10.1145/2807593

3. Birman, K.P., Schneider, F.B.: The monoculture risk put into context. IEEE Se-
curity & Privacy 7(1), 14–17 (2009)

4. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented Programming: A
New Class of Code-reuse Attack. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security. pp. 30–40. ASIACCS ’11,
ACM, New York, NY, USA (2011)

5. Braden, K., Crane, S., Davi, L., Franz, M., Larsen, P., Liebchen, C., Sadeghi, A.R.:
Leakage-Resilient Layout Randomization for Mobile Devices. In: Proceedings 2016
Network and Distributed System Security Symposium. Internet Society, San Diego,
CA (2016). https://doi.org/10.14722/ndss.2016.23364

6. Castañeda Lozano, R., Carlsson, M., Blindell, G.H., Schulte, C.: Combinatorial
Register Allocation and Instruction Scheduling. ACM Trans. Program. Lang. Syst.
41(3), 17:1–17:53 (Jul 2019)

7. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented Programming Without Returns. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security. pp. 559–572. CCS
’10, ACM, New York, NY, USA (2010)

8. Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis, The University of
Melbourne, Australia (2011)

9. Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A., Brunthaler,
S., Franz, M.: Readactor: Practical Code Randomization Resilient to Memory Dis-
closure. In: 2015 IEEE Symposium on Security and Privacy. pp. 763–780 (May
2015). https://doi.org/10.1109/SP.2015.52

10. Davi, L.V., Dmitrienko, A., Nürnberger, S., Sadeghi, A.R.: Gadge me if you can:
secure and efficient ad-hoc instruction-level randomization for x86 and ARM. In:
Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security. pp. 299–310 (2013), tex.organization: ACM

11. Gecode Team: Gecode: Generic constraint development environment (2020),
https://www.gecode.org

12. Hamming, R.W.: Error detecting and error correcting codes. The Bell sys-
tem technical journal 29(2), 147–160 (1950). https://doi.org/10.1002/j.1538-
7305.1950.tb00463.x

13. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding Diverse and Similar
Solutions in Constraint Programming. In: National Conference on Artificial In-
telligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference. p. 6 (2005)

14. Homescu, A., Jackson, T., Crane, S., Brunthaler, S., Larsen, P., Franz, M.:
Large-Scale Automated Software Diversity—Program Evolution Redux. IEEE
Transactions on Dependable and Secure Computing 14(2), 158–171 (Mar 2017).
https://doi.org/10.1109/TDSC.2015.2433252

15. Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., Franz, M.: Profile-guided
Automated Software Diversity. In: Proceedings of the 2013 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO). pp.



Constraint-Based Software Diversification Against Code-Reuse Attacks 17

1–11. CGO ’13, IEEE Computer Society, Washington, DC, USA (2013).
https://doi.org/10.1109/CGO.2013.6494997

16. Ingmar, L., de la Banda, M.G., Stuckey, P.J., Tack, G.: Modelling diversity of solu-
tions. In: Proceedings of the thirty-fourth AAAI conference on artificial intelligence
(2020)

17. Jacob, M., Jakubowski, M.H., Naldurg, P., Saw, C.W.N., Venkatesan, R.: The Su-
perdiversifier: Peephole Individualization for Software Protection. In: Matsuura,
K., Fujisaki, E. (eds.) Advances in Information and Computer Security. pp. 100–
120. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89598-5_7

18. Koo, H., Chen, Y., Lu, L., Kemerlis, V.P., Polychronakis, M.: Compiler-Assisted
Code Randomization. In: 2018 IEEE Symposium on Security and Privacy (SP).
pp. 461–477 (May 2018). https://doi.org/10.1109/SP.2018.00029

19. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131?183 (Jun 1992).
https://doi.org/10.1145/130844.130856

20. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: Automated Software
Diversity. In: 2014 IEEE Symposium on Security and Privacy. pp. 276–291 (May
2014). https://doi.org/10.1109/SP.2014.25

21. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: Code Generation and Optimization. IEEE (2004)

22. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: A tool for evalu-
ating and synthesizing multimedia and communicatons systems. In: International
Symposium on Microarchitecture. pp. 330–335. IEEE (1997)

23. Lundquist, G.R., Bhatt, U., Hamlen, K.W.: Relational processing for fun and di-
versity. In: Proceedings of the 2019 miniKanren and relational programming work-
shop. p. 100 (2019)

24. Lundquist, G.R., Mohan, V., Hamlen, K.W.: Searching for Software Diversity:
Attaining Artificial Diversity Through Program Synthesis. In: Proceedings of the
2016 New Security Paradigms Workshop. pp. 80–91. NSPW ’16, ACM, New York,
NY, USA (2016). https://doi.org/10.1145/3011883.3011891

25. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the Gadgets: Hin-
dering Return-Oriented Programming Using In-place Code Randomization. In:
2012 IEEE Symposium on Security and Privacy. pp. 601–615 (May 2012).
https://doi.org/10.1109/SP.2012.41

26. Petit, T., Trapp, A.C.: Finding Diverse Solutions of High Quality to Constraint
Optimization Problems. In: Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence (Jun 2015)

27. Salwan, J.: ROPgadget Tool (2020), http://shell-storm.org/project/
ROPgadget/

28. Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc With-
out Function Calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security. pp. 552–561. CCS ’07, ACM, New York,
NY, USA (2007)

29. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Principles and Practice of Constraint Programming. Lecture
Notes in Computer Science, vol. 1520, pp. 417–431. Springer (1998)

30. SPEC: CPU 2006 Benchmarks (2020), https://www.spec.org/cpu2006, accessed
on 2020-03-20

31. Sweetman, D.: See MIPS Run, Second Edition. Morgan Kaufmann (2006)



18 Rodothea Myrsini Tsoupidi, Roberto Castañeda Lozano, and Benoit Baudry

32. Van Hentenryck, P., Coffrin, C., Gutkovich, B.: Constraint-Based Local Search for
the Automatic Generation of Architectural Tests. In: Gent, I.P. (ed.) Principles
and Practice of Constraint Programming - CP 2009. pp. 787–801. Lecture Notes
in Computer Science, Springer Berlin Heidelberg (2009)

33. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
the ACM (JACM) 21(1), 168–173 (1974)

34. Wang, S., Wang, P., Wu, D.: Composite Software Diversification. In: 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME). pp.
284–294 (Sep 2017). https://doi.org/10.1109/ICSME.2017.61





Appendix B

Publication 2

85



Journal of Artificial Intelligence Research 72 (2021) 1471-1505 Submitted 03/2021; published 12/2021

Constraint-based Diversification of JOP Gadgets

Rodothea Myrsini Tsoupidi tsoupidi@kth.se
Royal Institute of Technology, KTH,
Stockholm, Sweden

Roberto Castañeda Lozano roberto.castaneda@ed.ac.uk
University of Edinburgh,
Edinburgh, United Kingdom

Benoit Baudry baudry@kth.se

Royal Institute of Technology, KTH,

Stockholm, Sweden

Abstract

Modern software deployment process produces software that is uniform, and hence
vulnerable to large-scale code-reuse attacks, such as Jump-Oriented Programming (JOP)
attacks. Compiler-based diversification improves the resilience and security of software
systems by automatically generating different assembly code versions of a given program.
Existing techniques are efficient but do not have a precise control over the quality, such as
the code size or speed, of the generated code variants.

This paper introduces Diversity by Construction (DivCon), a constraint-based compiler
approach to software diversification. Unlike previous approaches, DivCon allows users to
control and adjust the conflicting goals of diversity and code quality. A key enabler is the use
of Large Neighborhood Search (LNS) to generate highly diverse assembly code efficiently.
For larger problems, we propose a combination of LNS with a structural decomposition
of the problem. To further improve the diversification efficiency of DivCon against JOP
attacks, we propose an application-specific distance measure tailored to the characteristics
of JOP attacks.

We evaluate DivCon with 20 functions from a popular benchmark suite for embedded
systems. These experiments show that DivCon’s combination of LNS and our application-
specific distance measure generates binary programs that are highly resilient against JOP
attacks (they share between 0.15% to 8% of JOP gadgets) with an optimality gap of ≤
10%. Our results confirm that there is a trade-off between the quality of each assembly
code version and the diversity of the entire pool of versions. In particular, the experiments
show that DivCon is able to generate binary programs that share a very small number of
gadgets, while delivering near-optimal code.

For constraint programming researchers and practitioners, this paper demonstrates that
LNS is a valuable technique for finding diverse solutions. For security researchers and soft-
ware engineers, DivCon extends the scope of compiler-based diversification to performance-
critical and resource-constrained applications.

1. Introduction

Common software development practices, such as code reuse (Krueger, 1992) and automatic
updates, contribute to the emergence of software monocultures (Birman & Schneider, 2009).
While such monocultures facilitate software distribution, bug reporting, and software au-

c©2021 AI Access Foundation. All rights reserved.



Tsoupidi, Castañeda Lozano, & Baudry

thentication, they also introduce serious risks related to the wide spreading of attacks against
all users that run identical software.

Embedded devices, such as controllers in cars or medical implants, which manage sensi-
tive and safety-critical data, are particularly exposed to this class of attacks (Kornau et al.,
2010; Bletsch et al., 2011). Yet, this type of software usually cannot afford expensive defense
mechanisms (Salehi et al., 2019).

Software diversification is a method to mitigate the problems caused by software mono-
cultures, initially explored in the seminal work of Cohen (1993) and Forrest, Somayaji, and
Ackley (1997). Similarly to biodiversity, software diversification improves the resilience and
security of a software system (Baudry & Monperrus, 2015) by introducing diverse variants
of code in it. Software diversification can be applied in different phases of the software devel-
opment cycle, i.e. during implementation, compilation, loading, or execution (Larsen et al.,
2014). This paper is concerned with compiler-based diversification, which automatically
generates different binary code versions from a single source program.

Modern compilers do not merely aim to generate correct code, but also code that is of
high quality. There exists a variety of compilation techniques to optimize code for speed or
size (Ashouri et al., 2018). However, there exist few compiler techniques that target code di-
versification. These techniques are effective at synthesizing diverse variants of assembly code
for one source program (Larsen et al., 2014). However, they do not have a precise control
over other binary code quality metrics, such as speed or size. These techniques (discussed
in Section 5) are either based on randomizing heuristics or in high-level superoptimization
methods that do not capture accurately the quality of the generated code.

This paper introduces Diversity by Construction (DivCon), a compiler-based diversifi-
cation approach that allows users to control and adjust the conflicting goals of quality of
each code version and diversity among all versions. DivCon uses a Constraint Program-
ming (CP)-based compiler backend to generate diverse solutions corresponding to function-
ally equivalent program variants according to an accurate code quality model. The backend
models the input program, the hardware architecture, and the compiler transformations as
a constraint problem, whose solutions correspond to assembly code for the input program.
The synthesis of code diversity is motivated by Jump-Oriented Programming (JOP) attacks
(Checkoway et al., 2010; Bletsch et al., 2011) that exploit the presence of certain binary
code snippets, called JOP gadgets, to craft an exploit. Our goal is to generate binary vari-
ants that are functionally equivalent, yet do not have the same gadgets and hence cannot
be targeted by the exact same JOP attack.

The use of CP makes it possible to 1) control the quality of the generated solutions
by constraining the objective function, 2) introduce constraints tailored towards JOP gad-
gets, and 3) apply search procedures that are particularly suitable for diversification. More
specifically, we propose the use of Large Neighborhood Search (LNS) (Shaw, 1998), a pop-
ular metaheuristic in multiple application domains, to generate highly diverse binaries. For
larger problems, we investigate a combination of LNS with a structural decomposition of
the problem. Focusing on our application, DivCon provides different distance measures
that trade diversity for scalability.

Our experiments compiling 14 functions from a popular embedded systems suite to the
MIPS32 architecture confirm that there is a trade-off between code quality and diversity.
We demonstrate that DivCon allows users to navigate this space of near-optimal, diverse

1472



Constraint-based Diversification of JOP Gadgets

assembly code for a range of quality bounds. We show that the Paretto front of optimal
solutions synthesized by DivCon with LNS and a distance measure tailored against JOP
attacks, naturally includes code variants with few common gadgets. We show that DivCon
is able to synthesize significantly diverse variants, while guaranteeing a code quality of 10%
within optimality. We further evaluate an additional set of six functions, which belong to
the set of the 30% largest functions of the benchmark suite, to investigate the scalability of
DivCon.

For constraint programming researchers and practitioners, this paper demonstrates that
LNS is a valuable technique for finding diverse solutions. For security researchers and soft-
ware engineers, DivCon extends the scope of compiler-based diversification to performance-
critical and resource-constrained applications, and provides a solid step towards secure-by-
construction software.

To summarize, the main contributions of this paper are:

• the first CP-based technique for compiler-based, quality-aware software diversification;
• an experimental demonstration of the effectiveness of LNS at generating highly diverse

solutions efficiently;
• the evaluation of DivCon on a wide set of benchmarks of different sizes, including

large functions of up to 500 instructions;
• a quantitative assessment of the technique to mitigate code-reuse attacks effectively,

while preserving high code quality; and
• a publicly available tool for constraint-based software diversification1.

This paper extends our previous work (Tsoupidi, Castañeda Lozano, & Baudry, 2020).
We extend our investigation of LNS for code diversification with Decomposition-based Large
Neighborhood Search (DLNS) (Sections 3.2, 4.2, and 4.4), a specific LNS-based approach
for generating diverse solutions for larger programs. We propose a new distance measure
to explore the space of program variants, which specifically targets JOP gadgets: Gadget
Distance (GD) (Sections 3.3, 4.3, and 4.5). We perform a new set of experiments to compare
the diversification algorithms and the distance measures, with 19 new benchmark functions
up to 16 times larger than our previous dataset, providing new insights on the scalability of
our approach (Section 4.2). Finally, we add a case study on a voice compression application,
which provides a more complete picture on whole-program, multi-function diversification
using DivCon (Section 4.7).

2. Background

This section describes code-reuse attacks (Section 2.1), diversification approaches in CP
(Section 2.3), and combinatorial compiler backends (Section 2.4).

2.1 JOP Attacks

Code-reuse attacks take advantage of memory vulnerabilities, such as buffer overflows, to
reuse program legitimate code and repurpose it for malicious usages. More specifically,
code-reuse attacks insert data into the program memory to affect the control flow of the

1. https://github.com/romits800/divcon

1473



Tsoupidi, Castañeda Lozano, & Baudry

1 0x9d001408: ...

2 0x9d00140c: lw $s2 , 4($sp)

3 0x9d001410: lw $s4 , 0($sp)

4 0x9d001414: jr $t9

5 0x9d001418: addiu $sp , $sp , 16

(a) Original gadget.

1 0x9d001408: lw $s2 , 4($sp)

2 0x9d00140c: nop

3 0x9d001410: lw $s4 , 0($sp)

4 0x9d001414: jr $t8

5 0x9d001418: addiu $sp , $sp , 16

(b) Diversified gadget.

Figure 1: Example gadget diversification in MIPS32 assembly code

program. Consequently, the original, valid code is executed but the modified control flow
triggers and executes code that is valid but unintended.

Return-Oriented Programming (ROP) (Shacham, 2007) is a code-reuse attack that com-
bines different snippets from the original binary code to form a Turing complete language
for attackers. The building blocks of a ROP attack are the gadgets: meta-instructions that
consist of one or multiple code snippets with specific semantics. The original publication
considers the x86 architecture and the gadgets terminate with a ret instruction. Later pub-
lications generalize ROP for different architectures and in the absence of ret instructions,
such as JOP (Checkoway et al., 2010; Bletsch et al., 2011). This paper focuses on JOP
due to the characteristics of MIPS32, but could be generalized to other code-reuse attacks.
The code snippets for a JOP attack terminate with a branch instruction. Figure 1a shows
a JOP gadget found by the ROPgadget tool (Salwan, 2020) in a MIPS32 binary. Assuming
that the attacker controls the stack, lines 2 and 3 load attacker data in registers $s2 and
$s4, respectively. Then, line 4 jumps to the address of register $t9. The last instruction
(line 5) is placed in a delay slot and hence it is executed before the jump (Sweetman, 2006).
The semantics of this gadget depends on the attack payload and might be to load a value
to register $s2 or $s4. Then, the program jumps to the next gadget, which resides at the
stack address of $t9.

Statically designed JOP attacks use the absolute binary addresses for installing the
attack payload. Hence, a simple change in the instruction schedule of the program as in
Figure 1b prevents a JOP attack designed for Figure 1a. An attacker that designs an attack
based on the binary of the original program assumes the presence of a gadget (Figure 1a) at
position 0x9d00140c. However, in the diversified version, address 0x9d00140c does not start
with the initial lw instruction of Figure 1a, and by the end of the execution of the gadget,
register $s2 does not contain the attacker data. Moreover, by assigning a different jump
target register, $t8, the next target will not be the one expected by the attacker. In this
way, diversification can break the semantics of the gadget and mitigate an attack against
the diversified code.

2.2 Attack Model

We assume an attack model, where the attacker 1) knows the original C code of the appli-
cation, but 2) does not know the exact variant that each user runs, i.e. we assume that each
user runs a different diversified version of the program, as suggested by Larsen et al. (2014).
Also, 3) we assume the existence of a memory corruption vulnerability that enables a buffer
overflow. The defenses of the users include, Data Execution Prevention (DEP) (or W ⊕X),

1474



Constraint-based Diversification of JOP Gadgets

which ensures that no writable memory (W ) is executable (X) and vice versa. This ensures
that the attacker is not able to execute code that is directly inserted into the executable
code memory, for example the program stack.

For more advanced attacks, like JIT-ROP attacks (Snow, Monrose, Davi, Dmitrienko,
Liebchen, & Sadeghi, 2013), we discuss later (Section 4.8) possible configurations using our
approach.

2.3 Diversity in Constraint Programming

While typical CP applications aim to discover either some solution or the optimal solution,
some applications require finding diverse solutions for various purposes.

Hebrard et al. (2005) introduce the MaxDiversekSet problem, which is the problem
of finding the most diverse set of k solutions, and propose an exact and an incremental
algorithm for solving it. The exact algorithm does not scale to a large number of solutions
(Van Hentenryck et al., 2009; Ingmar et al., 2020). The incremental algorithm selects
solutions iteratively by solving a distance maximization problem.

Automatic Generation of Architectural Tests (ATGP) is an application of CP that
requires generating many diverse solutions. Van Hentenryck et al. (2009) model ATGP
as a MaxDiversekSet problem and solve it using the incremental algorithm of Hebrard
et al. (2005). Due to the large number of diverse solutions required (50-100), Van Hentenryck
et al. (2009) replace the maximization step with local search.

In software diversity, solution quality is of paramount importance. In general, earlier CP
approaches to diversity are concerned with satisfiability only. An exception is the approach
of Petit and Trapp (2015). This approach modifies the objective function for assessing
both solution quality and solution diversity, but does not scale to the large number of
solutions required by software diversity. Ingmar et al. (2020) propose a generic framework
for modeling diversity in CP. For tackling the quality-diversity trade-off, they propose
constraining the objective function with the optimal (or best known) cost o. DivCon applies
this approach by allowing solutions p% worse than o, where p is a user-defined parameter.

2.4 Compiler Optimization as a Combinatorial Problem

A Constraint Satisfaction Problem (CSP) is a problem specification P = 〈V,U,C〉, where
V are the problem variables, U is the domain of the variables, and C the constraints among
the variables. A Constraint Optimization Problem (COP), P = 〈V,U,C,O〉, consists of a
CSP and an objective function O. The goal of a COP is to find a solution that optimizes
O.

Compilers are programs that generate low-level assembly code, typically optimized for
speed or size, from higher-level source code. A compilation process can be modeled as
a COP by letting V be the decisions taken during the translation, C be the constraints
that the program semantics and the hardware resources impose, and O be the cost of the
generated code.

Compiler backends typically generate low-level assembly code from an Intermediate
Representation (IR), a program representation that is independent of both the source and
the target language. Figure 2 shows the high-level view of a combinatorial compiler backend.
A combinatorial compiler backend takes as input the IR of a program, generates and solves

1475



Tsoupidi, Castañeda Lozano, & Baudry

factorial.c

Compiler
Frontend

optimal

Combinatorial Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

source
code IR

optimal solution

factorial.c

Compiler
Frontend

optimal

Combinatorial Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

source
code IR

optimal solution

Figure 2: High-level view of a combinatorial compiler backend

a COP, and outputs the optimized low-level assembly code described by the solution to the
COP.

This paper assumes that programs at the IR level are represented by their Control-Flow
Graph (CFG). A CFG is a representation of the possible execution paths of a program,
where each node corresponds to a basic block and edges correspond to intra-block jumps.
A basic block is a set of abstract instructions (hereafter just instructions) with no branches
besides the end of the block. Each instruction is associated with a set of operands charac-
terizing its input and output data. Typical decision variables V of a combinatorial compiler
backend are the issue cycle ci ∈ N0 of each instruction i, the processor instruction mi ∈ N0

that implements each instruction i, and the processor register ro ∈ N0 assigned to each
operand o.

Figure 3a shows an implementation of the factorial function in C where each basic
block is highlighted. Figure 3b shows the IR of the program. The example IR contains
10 instructions in three basic blocks: bb.0, bb.1, and bb.2. Basic block bb.0 corresponds
to initializations, where $a0 holds the function argument n, and t1 corresponds to variable
f. bb.1 computes the factorial in a loop by accumulating the result in t2. bb.2 stores the
result to $v0 and returns. Some instructions in the example are interdependent, which
leads to serialization of the instruction schedule. For example, beq (6) consumes data (t3)
defined by slti (4) and hence needs to be scheduled later. Instruction dependencies limit the
amount of possible assembly code versions and may restrict diversity significantly. Finally,
Figure 3c shows the arrangement of the issue-cycle variables in the constraint model used
by the combinatorial compiler backend. Similarly, Figure 3d shows the arrangement of the
register variables.

The CFG representation of a program offers a natural decomposition of the COP into
subproblems, each consisting of a basic block. This partitioning requires first solving the
global problem that assigns registers to the program variables that are live (active) through
different basic blocks (Castañeda Lozano et al., 2012). For example, in Figure 3b, the global
problem has to assign a register to t1 because both bb.0 and bb.1 use it. Subsequently, it is
possible to solve the COP by optimizing each of the local problems (for every basic block),
independently.

DivCon aims at mitigating code-reuse attacks. Therefore, DivCon considers the order of
the instructions and the assignment of registers to their operands in the final binary, which
directly affects the feasibility of code-reuse attacks (see Figures 1a and 1b). For this reason,
the diversification model uses the issue-cycle sequence of instructions, c = {c0, c1, ..., cn},
and the register allocation, r = {r0, r1, ..., rn}, to characterize the diversity among different
solutions.

1476



Constraint-based Diversification of JOP Gadgets

int f a c t o r i a l ( int n) {

int f ;
f = 1 ;

while (n > 0) {
f ∗= n−−;

}

return f ;

}
(a) C code

0 : t1 ← $a0
1 : t2 ← 1
2 : b lez t1, bb . 2

3 : t2 ← mul t2, t1
4 : t3 ← s l t i t1, 2
5 : t1 ← addi t1, −1
6 : beq t3, %0, bb . 1
7 : b bb . 2

8 : $v0 ← t2
9 : j r $ra

bb.0

bb.1

bb.2

(b) IR

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

bb.0

bb.1

bb.2

(c) Issue cycles

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

i.0

i.1

i.2

i.3

i.4

i.5

i.6

i.8

i.9

(d) Register allo-
cation

Figure 3: Factorial function example

factorial.c

Compiler
Frontend

optimal

Comb. Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

...

source
code

optimal
solution

factorial.c

Compiler
Frontend

optimal

Comb. Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

...

source
code

optimal
solution
Figure 4: High-level view of DivCon

3. DivCon

This section introduces DivCon, a software diversification method that uses a combinatorial
compiler backend to generate program variants. Figure 4 shows a high-level view of the
diversification process. DivCon uses 1) the optimal solution (see Definition 1) to start the
search for diversification and 2) the cost of the optimal solution to restrict the variants
within a maximum gap from the optimal. Subsequently, DivCon generates a number of
solutions to the CSP that correspond to diverse program variants.

The rest of this section describes the diversification approach of DivCon. Section 3.1
formulates the diversification problem in terms of the constraint model of a combinatorial
compiler backend, Section 3.2 defines the proposed diversification algorithms, Section 3.3
defines the distance measures, and finally, Section 3.4 describes the search strategy for
generating program variants.

3.1 Problem Description

In this section, we will define the program diversification problem and stress important
concepts that we will use later in the evaluation part (Section 4). Let P = 〈V,U,C〉 be the
compiler backend CSP for the program under compilation and O the objective function of
the COP, 〈V,U,C,O〉.

1477



Tsoupidi, Castañeda Lozano, & Baudry

Definition 1 Optimal solution is the solution yopt ∈ sol(P ) that the combinatorial com-
piler backend (see Section 2.4) returns and for which O(yopt) = o.

We then define the optimality gap as follows:

Definition 2 Optimality gap is the ratio, p ∈ R≥0, that constrains the optimization
function, such that ∀s ∈ sol(P ) . O(s) ≤ (1 + p) · o.

We define the distance function (three such functions are defined in Section 3.3) as
follows:

Definition 3 Distance δ(s1, s2) is a function that measures the distance between two so-
lutions of P, s1, s2 ∈ sol(P ).

Let parameter h ∈ N be the minimum allowed pairwise distance between two generated
solutions. Our problem is to find a subset of the solutions to the CSP, S ⊆ sol(P ), such
that:

∀s1, s2 ∈ S . s1 6= s2 =⇒ δ(s1, s2) ≥ h and ∀s ∈ S .O(s) ≤ (1 + p) · o (1)

To solve the above problem, this paper proposes two LNS-based incremental algorithms
defined in Section 3.2. LNS is a metaheuristic that allows searching for solutions in large
parts of the search tree. This property makes LNS a good candidate for generating a large
number of diverse solutions. To guarantee that the new variants are sufficiently different
from each other, we define three distance measures (Section 3.3) that quantify the concept
of program difference for our application.

3.2 Diversification Algorithms

This section presents two LNS-based algorithms for the generation of a large number of
solutions for software diversification. The first algorithm (Algorithm 1), referred to as
simply LNS, solves the problem monolithically using an LNS-based approach. The second
algorithm, DLNS (Algorithm 2), decomposes the problem into subproblems and uses LNS
to diversify each of these subproblems independently and in parallel. The final solutions
are then composed by randomly combining the solutions of the subproblems.

LNS Algorithm. Algorithm 1 presents a monolithic LNS-based diversification algorithm.
It starts with the optimal solution yopt (line 3). Subsequently, the algorithm adds a distance
constraint for yopt and the optimality constraint with o = O(yopt) (line 4). While the termi-
nation condition is not fulfilled (line 5), the algorithm uses LNS as described in Section 3.4
to find the next solution y (line 6), adds the next solution to the solution set S (line 7),
and updates the distance constraints based on the latest solution (line 8). When the termi-
nation condition is satisfied, the algorithm returns the set of solutions S corresponding to
diversified assembly code variants (line 9).

In our experience, our application does not require large values of h because even small
distance between variants breaks gadgets (see Figure 1). An alternative algorithm that
may improve Algorithm 1 for larger values of h, is replacing solveLNS on line 6 and the
constraint update on line 8 with an LNS maximization step that returns a solution by
iteratively improving its pairwise distance with all current solutions in S until reaching the
value of h.

1478



Constraint-based Diversification of JOP Gadgets

Algorithm 1: Incremental algorithm for generating diverse solutions

1 function solve lns (yopt , 〈V,U,C〉)
2 begin

3 S ← {yopt } , y ← yopt ,
4 C′ ← C ∪ {δ(yopt) ≥ h , O(V ) ≤ (1 + p) · o}
5 while not term cond ( ) // e.g. |S| > k ∨ time_limit()

6 y ← solveLNS ( relax ( y ) , 〈V,U,C′〉)
7 S ← S ∪ {y}
8 C′ ← C′ ∪ {δ(y, s) ≥ h | ∀s ∈ sol(〈V,U,C′〉) }
9 return S

10 end

Decomposition Algorithm. This section presents DLNS (Algorithm 2), an LNS-based
algorithm that uses decomposition to enable diversification of large functions. To enable
this, the algorithm divides the problem into a global problem and a set of local subproblems,
one for each basic block of the function.

Algorithm 2 starts by adding the optimal solution to the set of solutions (line 3) and
continues by adding the optimality constraints (line 4). While the termination condition
is not satisfied, the algorithm solves the global problem (line 7). After finding a global
solution, the algorithm solves the local problems for each basic block b ∈ B in parallel
and generates a number of local solutions for each basic block (lines 9 and 10). Then, the
algorithm combines one randomly selected solution for each basic block (line 13). This
combined solution may be invalid (line 14) due to, for example, exceeded cost. In case the
solution is valid (line 14), the algorithm adds this solution to the set of solutions S (line
15) and, finally, adds a diversity constraint to the problem (line 16).

Algorithm 2: Decomposition-based incremental algorithm for generating diverse solutions

1 function solve decomp lns (yopt , 〈V,U,C〉)
2 begin

3 S ← {yopt } , y ← yopt ,
4 C′ ← C ∪ {δ(yopt) ≥ h , O(V ) ≤ (1 + p) · o}
5 while not term cond ( ) // e.g. |S| > k ∨ time_limit()

6 // Find partial solution

7 y ← psolveLNS ( relax ( y ) , 〈V,U,C′〉)
8 // Solve local problems

9 for b ∈ B
10 Sb ← spawn solve lns ( yb , 〈Vb, Ub, C

′
b〉)

11 // Select solutions

12 for | S1 × S2 × . . . × Sb |
13 y ← combine (∀ b ∈ B.∃ yb ∈ Sb . yb , 〈V,U,C′〉)
14 if valid ( y ) :
15 S ← S ∪ {y}
16 C′ ← C′ ∪ { δ(y, s) ≥ h | ∀s ∈ sol(〈V,U,C′〉) }
17 end

Example. Figure 5 shows two MIPS32 variants of the factorial example (Figure 3), which
correspond to two solutions of DivCon. The variants differ in two aspects: first, the beqz
instruction is issued one cycle later in Figure 5b than in Figure 5a, and second, the tem-
porary variable t3 (see Figure 3) is assigned to different MIPS32 registers ($t0 and $t1).

1479



Tsoupidi, Castañeda Lozano, & Baudry

LNS diversifies the function that consists of three basic blocks by finding different solu-
tions that assign values to the registers and the instruction schedule simultaneously. DLNS
solves first the global problem by assigning registers to the temporary variables that are
live across multiple basic blocks (t1 and t2) and then assigns the issue schedule and the rest
of the registers for each basic block, independently and possibly in parallel. The diversified
variants in Figure 5 serve presentation purposes. Figure 7 in Appendix B presents a more
elaborated example of two diversified functions.

3.3 Distance Measures

This section defines three alternative distance measures: Hamming Distance (HD), Leven-
shtein Distance (LD), and Gadget Distance (GD). HD and LD operate on the schedule
of the instructions, i.e. the order in which the instructions are issued in the CPU, whereas
GD operates on both the instruction schedule and the register allocation, i.e. the hard-
ware register for each operand. Early experimental results that we have performed have
shown that diversifying register allocation is less effective than diversifying the instruction
schedule against code-reuse attacks. However, restricting register allocation diversity to the
instructions very near a branch instruction (a key component of a JOP gadget), improves
DivCon’s gadget diversification effectiveness.

Hamming Distance (HD). HD is the Hamming distance (Hamming, 1950) between the
issue-cycle variables of two solutions. Given two solutions s, s′ ∈ sol(P ):

δHD(s, s′) =
n∑

i=0

(s(ci) 6= s′(ci)), (2)

where n is the maximum number of instructions.
Consider Figure 1b, a diversified version of the gadget in Figure 1a. The only instruction

that differs from Figure 1a is the instruction at line 1 that is issued one cycle before. The
two examples have a HD of one, which in this case is enough for breaking the functionality
of the original gadget (see Section 2.1).

Levenshtein Distance (LD). Levenshtein Distance (or edit distance) measures the min-
imum number of edits, i.e. insertions, deletions, and replacements, that are necessary for
transforming one instruction schedule to another. Compared to HD, which considers only

1 bb.0: blez $a0 , bb.2

2 addiu $v0 , $zero , 1

3 bb.1: mul $v0 , $v0 , $a0

4 slti $t0 , $a0 , 2

5 beqz $t0 , bb.1

6 addi $a0 , $a0 , -1

7 bb.2: jr $ra

8 nop

(a) Variant 1

1 bb.0: blez $a0 , bb.2

2 addiu $v0 , $zero , 1

3 bb.1: mul $v0 , $v0 , $a0

4 slti $t1 , $a0 , 2

5 nop

6 beqz $t1 , bb.1

7 addi $a0 , $a0 , -1

8 bb.2: jr $ra

9 nop

(b) Variant 2

Figure 5: Two MIPS32 variants of the factorial example in Figure 3

1480



Constraint-based Diversification of JOP Gadgets

replacements, LD also considers insertions and deletions. To understand this effect, con-
sider Figure 5. The two gadgets differ only by one nop operation but HD gives a distance
of three, whereas LD gives one, which is more accurate. LD takes ordered vectors as input,
and thus requires an ordered representation (as opposed to a detailed schedule) of the in-
structions. Therefore, LD uses vector c−1 = channel(c), a sequence of instructions ordered
by their issue cycle. Given two solutions s, s′ ∈ sol(P ):

δLD(s, s′) = levenshtein distance(s(c−1), s′(c−1)), (3)

where levenshtein distance is the WagnerFischer algorithm (Wagner & Fischer, 1974)
with time complexity O(nm), where n and m are the lengths of the two sequences.

Gadget Distance (GD). GD is an application-specific distance measure targeting JOP
gadgets that we propose in this paper. GD operates on both register allocation and instruc-
tion scheduling, focusing on the instructions preceding a branch instruction because JOP
gadgets terminate with a branch instruction. In this way, GD enforces the program variants
to differ with regards to the gadgets. Here, the set of branch instructions, B, consists of
all indirect jump or call instructions (e.g. line 7 in Figure 5a). A gadget may also use a
direct jump (e.g. line 5 in Figure 5a). However, the majority of gadgets require control over
the jump target, which is not possible with direct jumps. GD uses two configuration pa-
rameters, nc and nr. Parameter nc denotes the number of instructions before each branch,
br ∈ B, that the issue cycle of two variants may differ. Similarly, parameter nr denotes the
number of instructions preceding a branch of two variants that the register assignment of
the instruction operands may differ. Consider Figure 1b. The two gadgets differ by one nop

instruction and a different register at instruction 4. Then, the GD distance is two, given
nc = 3 and nr = 0.

Given two solutions s, s′ ∈ sol(P ), the partial distance δnr,nc

PGD on branch br ∈ B is :

δnr,nc

PGD (s, s′, br) =

Ni∑

i=0


f(s, nc, i, br)(s(ci) 6= s′(ci)) +

∑

p∈ps(ci)
f(s, nr, i, br)(s(rp) 6= s′(rp))


 ,

(4)

where Ni is the number of instructions, ps(ci) is the set of operands in instruction i, and
f(s, n, i, br) is a function that takes four inputs, i) one solution s ∈ S, ii) a natural number
that corresponds to the allowed distance of an instruction i from a branch instruction br,
iii) instruction i, and iv) branch instruction br. The definition of f is as follows:

f(s, n, i, br) =

{
1, s(cbr)− s(ci) ∈ [0, n]

0, otherwise
. (5)

Finally, given two solutions s, s′ ∈ sol(P ), the Gadget Distance δnr,nc

GD is defined as:

δnr,nc

GD (s, s′) =
∑

br∈B

(
δnr,nc

PGD (s, s′, br)
)
. (6)

Note that in Algorithm 1 and Algorithm 2, GD will result in a number of constraints
equal to the number of branches in B plus one.

1481



Tsoupidi, Castañeda Lozano, & Baudry

Table 1: Original and Random branching strategies

(a) Original branching strategy

Variable
Var.

Selection
Value Selection

ci in order min. val first
mi in order min. val first
ro in order randomly

(b) Random branching strategy

Variable
Var.

Selection
Value Selection

ci randomly randomly
mi randomly randomly
ro randomly randomly

3.4 Search

Unlike previous CP approaches to diversity, DivCon employs Large Neighborhood Search
(LNS) (Shaw, 1998) for diversification. LNS is a metaheuristic that defines a neighborhood,
in which search looks for better solutions, or in our case, different solutions. The definition
of the neighborhood is through a destroy and a repair function. The destroy function
unassigns a subset of the variables in a given solution and the repair function finds a new
solution by assigning new values to the destroyed variables.

In DivCon, the algorithm starts with the optimal solution (Definition 1) of the combi-
natorial compiler backend. Subsequently, it destroys a part of the variables and continues
with the model’s branching strategy to find the next solution, applying a restart after a
given number of failures. LNS uses the concept of neighborhood, i.e. the variables that LNS
may destroy at every restart. To improve diversity, the neighborhood for DivCon consists of
all decision variables, i.e. the issue cycles c, the instruction implementations m, and the reg-
isters r. Furthermore, LNS depends on a branching strategy to guide the repair search. To
improve security and allow LNS to select diverse paths after every restart, DivCon employs
a random variable-value selection branching strategy as described in Table 1b.

4. Evaluation

This section evaluates DivCon experimentally. For simplicity, the section uses the acronyms
LNS and DLNS to refer to the specific application of Algorithms 1 and 2 in DivCon. The
diversification effectiveness and the scalability of DivCon depend on three main dimensions:

• Optimality gap (see Definition 2), which relaxes the optimization function. Here,
we evaluate the diversification effectiveness and scalability for four different values of
p, 0%, 5%, 10%, and 20%
• Diversification algorithm. We compare our two proposed algorithms, LNS (Al-

gorithm 1) and DLNS (Algorithm 2) with Random Search (RS) and incremental
MaxDiversekSet (Hebrard et al., 2005). RS uses the branching strategy of Ta-
ble 1b. For MaxDiversekSet, the first solution corresponds to the optimal solution
(see Definition 1) and the maximization step uses the branching strategy of Table 1a.
• Distance measure. We compare four distance measures (Section 3.3), HD, δHD, LD,
δLD, and two configurations of GD for different values of parameters nr and nc (see
Section 3.3), δ0,2

LD and δ0,8
LD. The two parameters control the number of instructions

preceding a branch that differ among different solutions. The smaller these parameters

1482



Constraint-based Diversification of JOP Gadgets

are, the higher the chance of breaking a larger number of JOP gadgets, given that all
gadgets end with a branch instruction.

The output of DivCon is a set of diverse binary variants. To evaluate the diversification
effectiveness of each approach, we compare the generated binaries using the following three
measures:

• Code diversity, which measures the pairwise distance of the final binaries using the
same distance that was used for diversification. The definition is in Equation 7.
• Gadget diversity, which measures the rate of gadgets that DivCon diversifies suc-

cessfully (see Section 4.4).
• Scalability, which is related to the number of variants generated within a fixed time

budget or the total time required to generate the maximum number of variants.

The six research questions (RQs) below investigate the influence of the optimality gap,
diversification algorithm, distance measure, and program scope with respect to our
three diversity measures.

• RQ1. How effective are our two novel diversification algorithms? Here, we compare
LNS and DLNS with state-of-the-art diversification algorithm, with respect to their
ability to generate binary code that is as diverse as possible. To address this ques-
tion, we evaluate the code diversity of DivCon for the different diversification
algorithms.
• RQ2. What is the scalability of the distance measures when generating multiple

program variants? Here, we evaluate which of the distance measures is the most
appropriate for software diversification. To address this question, we evaluate the
scalability of DivCon for the different distance measures.
• RQ3. How effective is DivCon using LNS and DLNS at mitigating JOP attacks? In

this part, we evaluate which method is the most effective against JOP attacks by
comparing the rate of shared gadgets among the generated solutions. To address this
question, we evaluate the gadget diversity of DivCon for the different diversifica-
tion algorithms.
• RQ4. How effective is DivCon using different distance measures against JOP attacks?

Here, we evaluate the effectiveness of DivCon using four different distance measures
against JOP attacks. To address this question, we evaluate the gadget diversity of
DivCon for the different distance measures.
• RQ5. How does code quality affect the effectiveness of LNS against JOP attacks using

an application-specific distance measure? Here, we evaluate the effect of code quality
on the effectiveness of DivCon at mitigating JOP attacks. To address this question,
we evaluate the gadget diversity of DivCon for the different optimality gaps.
• RQ6. What is the effect of function diversification with DivCon at the application

level? Here, we evaluate the effect of diversification using DivCon with a voice com-
pression case study. To address this question, we evaluate the gadget diversity of
DivCon in a compiled whole-program binary consisting of multiple functions.

4.1 Experimental Setup

The following paragraphs describe the experimental setup for the evaluation of DivCon.

1483



Tsoupidi, Castañeda Lozano, & Baudry

Implementation. DivCon is implemented as an extension of Unison (Castañeda Lozano,
Carlsson, Blindell, & Schulte, 2019), and is available online2. Unison implements two back-
end transformations: instruction scheduling and register allocation. As part of register
allocation, Unison captures many interdependent transformations such as spilling, register
assignment, coalescing, load-store optimization, register packing, live range splitting, re-
materialization, and multi-allocation (Castañeda Lozano et al., 2019). Unison models two
objective functions for code quality, speed and code size. This evaluation uses the speed
objective function, which considers statically derived basic-block frequencies and the exe-
cution time of each basic block that depends on the shared resources, the instruction issue
cycles, and the instruction latencies. These execution times and latencies were based on a
generic MIPS32 model of LLVM (Castañeda Lozano et al., 2019). DivCon relies on Unison’s
solver portfolio that includes Gecode v6.2 (Gecode Team, 2020) and Chuffed v0.10.3 (Chu,
2011) to find optimal binary programs. We use Gecode v6.2 for automatic diversification
because Gecode provides an interface for customizing search. The LLVM compiler (Lattner
& Adve, 2004) is used as a front-end and IR-level optimizer, as well as for the final emission
of assembly code. DivCon operates on the Machine Intermediate Representation (MIR)3

level of LLVM.

Benchmark functions and platform. We evaluate the ability of DivCon to generate
program variants with 20 functions sampled randomly from MediaBench4 (Lee et al., 1997).
This benchmark suite is widely employed in embedded systems research. We select two sets
of benchmarks. The first set consists of 14 functions ranging from 10 to 100 MIR instructions
with a median of 58 instructions. The second set consists of six functions ranging between
100 and 1000 lines of MIR instructions. Functions with size below 100 MIR instructions
compose the 65% of the functions in MediaBench, whereas functions with size less than
500 MIR instruction compose the 93%, and those with size less than 1000 MIR instructions
compose the 97% of the functions in MediaBench.

Smaller functions in the first set allow the evaluation of all algorithms and distance
measures regardless of their computational cost, whereas larger functions challenge our
diversification algorithms. Table 2 lists the ID, application, function name, the number of
basic blocks, and the number of MIR instructions of each sampled function. For evaluating
the scalability of DivCon, we perform an additional experiment consisting of the second set
of functions. Table 3 describes these additional benchmarks. The evaluation for scalability
of these benchmarks for all the random seeds takes more than one week due to memory
limitations that force sequential execution. Therefore, we use these benchmarks only for
evaluating the scalability of DivCon.

Furthermore, for evaluating the effectiveness of our approach at the application level,
we perform a case study of one of application from MediaBench, G.721. This application
consists of functions that we present in Table 11.

The functions are compiled to MIPS32 assembly code, a popular architecture within
embedded systems and the security-critical Internet of Things (Alaba et al., 2017).

2. https://github.com/romits800/divcon

3. Machine Intermediate Representation: https://www.llvm.org/docs/MIRLangRef.html

4. A later version of MediaBench, MediabBench II was not complete by the time we are writing this paper.

1484



Constraint-based Diversification of JOP Gadgets

Table 2: Benchmarks functions - 10 to 100 MIR instructions

ID application function name # blocks # instructions

b1 rasta FR2TR 4 19
b2 mesa glColor3ubv 1 20
b3 mesa glTexCoord1dv 1 21
b4 g721 ulaw2alaw 4 22
b5 jpeg start pass main 5 26
b6 mesa glTexCoord4sv 1 27
b7 mesa glEvalCoord2d 5 47
b8 mesa glTexGendv 5 58
b9 rasta open out 8 58
b10 jpeg quantize3 ord dither 7 71
b11 mpeg2 pbm getint 12 86
b12 mesa gl save PolygonMode 11 89
b13 ghostscript gx concretize DeviceCMYK 13 93
b14 mesa gl save MapGrid1f 11 96

Host platform. All experiments run on an Intel R©CoreTMi9-9920X processor at 3.50GHz
with 64GB of RAM running Debian GNU/Linux 10 (buster). Each experiment runs for 15
random seeds. The aggregated results of the evaluation (RQ1) show the mean value and the
standard deviation for the maximum number of generated variants, where at least five seeds
are able to terminate within a time limit. For the smaller benchmarks (Table 2), we have
10GB of virtual memory for each of the executions. The experiments for different random
seeds run in parallel (five seeds at a time), with two unique cores available for every seed
for overheating reasons. To take advantage of the decomposition scheme, DLNS experi-
ments use eight threads (four physical cores) with three experiments (three seeds at a time)
running in parallel. The rest of the algorithms run as sequential programs. For the larger
benchmarks (Table 3), the available virtual memory for each of the executions is 64GB.
The experiments for different random seeds run sequentially and the DLNS experiments
use eight threads.

Algorithm Configuration. The experiments focus on speed optimization and aim to
generate 200 variants within a timeout. Parameter h in Algorithms 1 and 2 is set to one
because even small distance between variants is able to break gadgets (see Figure 1). LNS
uses restart-based search with a limit of 1000 failures and a relax rate of 60%. The relax
rate is the probability that LNS destroys a variable at every restart, which affects the
distance between two subsequent solutions. The relax rate is selected empirically based on
preliminary experiments (Appendix A). Note that in our previous paper (Tsoupidi et al.,
2020), the best relax rate on a different benchmark set was found to be 70%. This suggests
that the optimal relax rate depends on the properties of the program under compilation,
where the number of instructions appears to be a significant factor. DLNS uses the same
parameters as LNS for the local problems, which consist of the individual basic blocks, and
a different relax rate for the global problem (50% for b1 to b14 and 10% for the larger
benchmarks).

1485



Tsoupidi, Castañeda Lozano, & Baudry

Table 3: Benchmarks functions - 100 to 1000 MIR instructions

ID application function name #blocks #instructions

b15 mesa gl xform normals 3fv 10 107
b16 jpeg start pass 1 quant 34 215
b17 mesa apply stencil op to span 65 267
b18 mesa antialiased rgba points 39 366
b19 mesa gl depth test span generic 102 403
b20 mesa general textured triangle 40 890

4.2 RQ1. Scalability and Diversification Effectiveness of LNS and DLNS

This section evaluates the diversification effectiveness and scalability of LNS and DLNS
compared to incremental MaxDiversekSet and RS. Here, effectiveness is the ability
to maximize the difference between the different variants generated by a given algorithm.
Scalability is related to the number of variants generated within a fixed time budget and
the total time required to generate the maximum number of variants. This experiment uses
HD as the distance measure because HD is a general-purpose distance that may be valuable
for different applications.

We measure the diversification effectiveness of these methods based on the relative
pairwise distance of the solutions. Given a set of solutions S and a distance measure δ, the
pairwise distance d of the variants in S is:

d(δ, S) =

|S|∑

i=0

|S|∑

j>i

δ(si, sj) /

(|S|
2

)
. (7)

The larger this distance, the more diverse the solutions are, and thus, diversification
is more effective. Tables 4 and 5 shows the pairwise distance d and diversification time t
(in seconds) for each benchmark and method. Each experiment uses a time budget of 20
minutes and an optimality gap of p = 10%. The best values of d (larger) and t (lower) are
marked in bold for the completed experiments. Multiple values may be marked in bold
when these values do not differ significanlty. Incomplete experiments are highlighted in
italic and their number of variants in parenthesis. A complete experiment is an experiment,
where the algorithm was able to generate the maximum number of 200 variants within the
time limit for at least five of the random seeds. The values of d and t correspond to the
results for these random seeds.

Scalability. The scalability results (t) show that only DLNS is scalable to large bench-
marks, i.e. it is able to generate the maximum of 200 variants for all benchmarks except for
b20. Benchmark b20 contains a large number of MIR instructions and a small number of
basic blocks (see Table 3) and thus, exceeds Unison’s solving capability (Castañeda Lozano
et al., 2019). RS and LNS are scalable for the majority of the benchmarks between 10 and
100 lines of MIR instructions (Table 4). In both benchmark sets, MaxDiversekSet scales
poorly, it cannot generate 200 variants for any benchmark. MaxDiversekSet is able to
find a small number of variants for b1 -b6. However, it is not able to find any variant for
the rest of the benchmarks. The first six benchmarks are small functions with less that 30

1486



Constraint-based Diversification of JOP Gadgets

ID
MaxDiversekSet RS LNS (0.6) DLNS (0.6)

d t(s) d t(s) d t(s) d t(s)
b1 36.4±7.7 - (2) 4.1±0.3 0.1±0.0 26.6±6.6 2.4±0.9 12.0±1.6 9.4±5.8
b2 18.7±0.2 - (4) 5.7±0.1 0.2±0.0 13.2±0.6 1.7±0.3 9.7±1.1 9.4±2.0
b3 19.3±1.2 - (3) 5.1±0.1 0.2±0.0 14.8±1.1 1.4±0.3 9.8±1.9 5.8±1.2
b4 22.4±0.0 - (27) 5.3±0.0 0.2±0.0 15.4±1.4 1.1±0.2 11.8±1.9 11.7±9.2
b5 35.0±0.7 - (2) 5.3±0.0 0.2±0.0 22.8±2.3 2.9±0.3 13.1±1.6 5.7±0.8
b6 28.0±0.0 - (2) 4.5±0.0 0.4±0.0 23.5±0.8 13.8±2.2 22.0±1.0 51.6±12.2
b7 - - 4.9±0.1 0.4±0.0 45.2±2.4 7.3±1.1 19.9±5.0 4.3±0.8
b8 - - 4.3±0.1 0.5±0.0 57.4±3.0 11.1±1.4 25.6±5.6 4.6±0.7
b9 - - 3.0±0.0 0.7±0.0 64.0±7.2 15.6±5.2 28.1±6.7 6.1±2.1
b10 - - 1.0±0.0 - (3) 160.9±16.0 332.1±88.8 30.4±14.3 7.6±0.9
b11 - - 1.9±0.0 7.6±0.1 155.9±4.4 110.0±27.1 48.9±13.6 7.7±1.3
b12 - - 1.7±0.0 4.5±0.7 127.4±3.7 361.3±77.3 32.2±15.1 6.0±0.4
b13 - - 1.9±0.0 3.0±0.0 103.7±5.4 94.6±39.7 46.7±9.8 15.5±21.9
b14 - - 1.2±0.1 6.0±0.1 139.3±2.9 865.4±99.4 39.3±20.1 7.0±0.5

Table 4: Distance and Scalability of LNS and DLNS against RS and MaxDiversekSet -
10 to 100 MIR instructions

ID
MaxDiversekSet RS LNS (0.6) DLNS (0.6)

d t(s) d t(s) d t(s) d t(s)

b15 - - 1.0±0.0 - (7) 278.5±4.2 - (159) 30.6±25.5 103.3±51.2
b16 - - - - - - 73.1±41.0 57.3±14.7
b17 - - 2.7±0.2 318.8±0.2 375.4±13.4 - (27) 147.9±37.1 92.0±33.7
b18 - - - - - - 167.5±169.8 287.2±4.0
b19 - - 1.0±0.0 2902.8±1.6 - - 222.8±48.6 139.3±22.8
b20 Unison and DivCon cannot handle this function.

Table 5: Distance and Scalability of LNS and DLNS against RS and MaxDiversekSet -
100 to 1000 MIR instructions

MIR instructions, whereas the rest of the benchmarks are larger and consist or more than
47 instructions (see Table 2).

LNS is slower than RS and DLNS, requiring up to 855 seconds or approximately 14.25
minutes for diversifying b14. Similar to MaxDiversekSet, the number of instructions ap-
pears to be the main factor that determines the scalability of LNS. For the large benchmarks
of Table 4, b10 -b12, and b14, the diversification time is larger than one minute, whereas
for smaller benchmarks b1 -b9, which have less than 60 MIR instructions, the diversification
time is less than one minute. For the largest benchmarks (Table 5), LNS is able to generate
159 variants for b15 in around 4.63 minutes, but is not able to scale for larger benchmarks.

DLNS is generally slower than RS for the benchmarks of Table 4, but is able to scale to
larger benchmarks, as seen in Table 5, where RS manages to generate 200 variants only for
b17 and b19. We can see that DLNS has similar performance regardless of the benchmark
size, with a general increase in the diversification time for larger benchmarks (Table 5). This
increase depends on the number of threads (eight) that is smaller than the number of basic
blocks. For small benchmarks with basic blocks that contain few instructions, decomposition
is not advantageous because it does not reduce the search space significantly. Instead, DLNS

1487



Tsoupidi, Castañeda Lozano, & Baudry

introduces an overhead when some versions of the local solutions cannot be combined into
a solution. Among the commonly scalable benchmarks, the advantage of DLNS compared
to RS is clear in medium and large benchmarks, b10 -b14, b17, and b19, where DLNS is
able generate a large number of variants. At the same time, DLNS demonstrates a large
variation in the solutions with the different seeds. This is due to the decomposition scheme
of Algorithm 2. That is, depending on the random seed, the algorithm might need to restart
the global problem just once or multiple times.

Overall, for small benchmarks, i.e. less than 60 MIR instructions, RS, LNS, and DLNS
are all able to generate program variants efficiently (less than 16 seconds), whereas for larger
benchmarks, only DLNS is able to generate a large number of variants efficiently.

Diversity. The diversity results (d) show that LNS is more effective at diversifying than
RS and DLNS. The improvement of LNS over RS ranges from 1.3x (for b2 ) to 115x (for
b14 ), whereas the improvement of LNS over DLNS is smaller and ranges from 7% (for b6 )
to 429% or 4x (for b10 ). DLNS is clearly less effective at generating highly diverse variants
than LNS, but more effective than RS. In particular, the improvement of DLNS over RS
ranges from 70% (for b1 ) to 222x (for b19 ). The difference between LNS and DLNS in
generating diverse solutions is due to the ability of the former to consider the problem as a
whole, enabling more fine-grained solutions.

MaxDiversekSet is not able to generate 200 variants for any of the benchmarks but
may give an indication of an upper bound for diversification of the smaller benchmarks.
That is, although MaxDiversekSet is not exact, i.e. it maximizes the pairwise distance
iteratively, we expect that LNS, DLNS, and RS are not able to achieve higher pairwise
diversity than MaxDiversekSet. However, a direct comparison is not possible because
MaxDiversekSet is not able to generate 200 variants for any of the benchmarks.

Conclusion. In summary, LNS and DLNS provide two attractive solutions for diversifying
code: LNS is significantly and consistently more effective at diversifying code than both
RS and DLNS, but does not scale efficiently for large benchmarks, whereas DLNS is more
effective than both LNS and RS at generating variants for large problems, and is still able
to improve significantly the diversity over RS.

4.3 RQ2. Scalability of LNS with Different Distance Measures

In this section, we compare the distance measures introduced in Section 3.3 with regards to
their ability to steer the search towards diverse program variants within a maximum time
budget. Based on the results of RQ1, we focus on the LNS search algorithm, and run it
with each distance metric. For the problem-specific distance measure, GD, we compare two
configurations, i) nr = 0 and nc = 2 and ii) nr = 0 and nc = 8. The two parameters control
the number of instructions preceding a branch that differ among different solutions. The
smaller these parameters are, the higher the chance of breaking a larger number of gadgets,
given that all gadgets end with a branch instruction.

Table 6 presents the results of the distance evaluation, where the time limit is 10 minutes
and the optimality gap p = 10%. For each distance measure (δHD, δLD, δ0,2

GD, and δ0,8
GD),

the table shows the diversification time t, in seconds (or “-” if the algorithm is not able to
generate 200 variants) and the number of generated variants num within the time limit.

1488



Constraint-based Diversification of JOP Gadgets

Table 6: Scalability of δHD, δLD, δ0,2
GD, and δ0,8

GD

ID
δHD δLD δ0,2GD δ0,8GD

t(s) num t(s) num t(s) num t(s) num
b1 2.7±0.9 200 - 37 6.9±7.1 200 2.9±1.0 200
b2 1.8±0.4 200 - 41 - 75 5.8±2.6 200
b3 1.6±0.2 200 - 44 - 121 4.5±3.4 200
b4 1.3±0.2 200 - 38 2.5±0.9 200 1.4±0.4 200
b5 3.6±0.3 200 - 27 - 12 112.4±126.8 200
b6 14.1±2.3 200 - 15 172.1±179.4 200 17.6±3.3 200
b7 7.9±1.3 200 - 12 181.5±183.4 200 19.6±4.0 200
b8 12.1±1.5 200 - 8 73.1±22.2 200 32.1±6.6 200
b9 17.0±4.6 200 - 5 - 56 217.5±158.6 200
b10 348.6±90.7 200 - - 359.8±59.4 200 319.3±81.8 200
b11 121.1±29.0 200 - - - 77 445.1±64.6 200
b12 377.9±76.7 200 - - - 105 - 60
b13 107.6±44.1 200 - - 377.7±158.4 200 208.7±110.6 200
b14 - 152 - - - 55 - 36

The value of num is the maximum number of variants that at least five (out of 15) of the
random seeds generate.

The results show that when DivCon uses LNS with Hamming Distance, δHD, it gen-
erates 200 variants for all benchmarks except b12, where it generates 157 variants. The
diversification time with δHD ranges from one second for b4 to approximately six minutes
for b12. On the other hand, DivCon using Levenshtein Distance (LD), δLD, is not able to
generate 200 variants for any of the benchmarks within the time limit. The scalability issues
of δLD are due to the quadratic complexity of its implementation (Wagner & Fischer, 1974),
whereas Hamming Distance can be implemented linearly. DivCon using the first configura-
tion of Gadget Distance (GD), δ0,2

GD, generates the maximum number of variants for seven

benchmarks, i.e. b1,b4, b6 -b8, b10, and b13. Distance δ0,2
GD uses small values for parameters

nr = 0 and nc = 2, which leads to a reduced number of solutions (see Section 3.3). This
has a negative effect on the scalability, resulting in low variant generation for the rest of
the benchmarks. Using the second configuration of GD, distance δ0,8

GD, with nr = 0 and
nc = 8, DivCon generates the maximum number of variants for all benchmarks except b12
and b14. The time to generate the variants with δ0,8

GD is larger than with δHD. With this
gadget-targeting metric, DivCon takes up to seven minutes for generating 200 variants for
b11.

Conclusion. DivCon using LNS and the δ0,8
GD or δHD distance can generate a large number

of diverse program variants for most of the benchmark functions. Scalability, given the
maximum number of variants, comes with slightly longer diversification time for δ0,8

GD than
with δHD. In Section 4.5, we evaluate the distance measures with regards to security.

1489



Tsoupidi, Castañeda Lozano, & Baudry

4.4 RQ3. JOP Attacks Mitigation: Effectiveness of LNS and DLNS

Software Diversity has various applications in security, including mitigating code-reuse at-
tacks. To measure the level of mitigation that DivCon achieves, we assess the JOP gadget
survival rate srate(si, sj) between two variants si, sj ∈ S, where S is the set of generated
variants. This metric determines how many of the gadgets of variant si appear at the same
position on the other variant sj , that is srate(si, sj) = |gad(si)− gad(sj)| / |gad(si)|, where
gad(si) are the gadgets in solution si. The procedure for computing srate(si, sj) is as fol-
lows: 1) find the set of gadgets gad(si) in solution si, and 2) for every g ∈ gad(si), check
whether there exists a gadget identical to g at the same address of sj . For step 1, we use the
state-of-the-art tool, ROPgadget (Salwan, 2020), to automatically find the gadgets in the
.text section of the compiled code. For step 2, the comparison is syntactic after removing
all nop instructions. Syntactic comparison is scalable but may result in false negatives.

This and the following sections evaluate the effectiveness of DivCon against code-reuse
attacks. To achieve this, all experiments compare the distribution of srate for all pairs
of generated solutions. Due to its skewness, the distribution of srate is represented as a
histogram with four buckets (0%, (0%, 10%], (10%,40%], and (40%, 100%]) rather than
summarized using common statistical measures. Here, the best is an srate(si, sj) of 0%,
which means that sj does not contain any gadgets that exist in si, whereas an srate(si, sj)
in range (40%,100%] means that sj shares more than 40% of the gadgets of si.

To evaluate the gadget diversification efficiency, we compare the srate for all permuta-
tions of pairs in S for LNS and DLNS with RS as a baseline. Low srate corresponds to
higher mitigation effectiveness because code-reuse attacks based on gadgets in one variant
have lower chances of locating the same gadgets in the other variants (see Figure 1). Ta-
bles 7 and 8 summarize the gadget survival distribution for all benchmarks for algorithms
RS, LNS, and DLNS. We use 10% as the optimality gap and HD because, as we saw in
RQ2, DivCon using HD is the most scalable diversification configuration. The values in
bold correspond to the most frequent value(s) of the histogram. The time limit for this
experiment is 20 minutes. Column num shows the average of the generated number of
variants for all random seeds.

First, we notice that for the smaller benchmarks, b2 to b3, and b6, all algorithms are able
to generate variant pairs that share no gadgets, i.e. the most frequent values are in the first
bucket (column =0 ). RS generates diverse variants that share a small number of gadgets
for b2-b4, b6, and b10 (only three variants). For the other benchmarks, the most common
values are in the second (b11 ), or the third (b5, b7 -b9, b12 -b14, b17, and b19 ) bucket,
which provides poor mitigation effectiveness against JOP attacks. The poor effectiveness
of RS against code-reuse attacks can be correlated with the poor diversity effectiveness of
the method (see Section 4.2).

LNS generates diverse variants that do not share any gadgets (belong to the first bucket)
for all benchmarks except b5. Benchmark b5 has different behavior because it has a highly
constrained register allocation due to specific constraints imposed by the calling conventions.

Finally, DLNS has similar performance to RS for medium size benchmarks (Table 7),
but worse performance for large benchmarks (Table 8). In particular, only five benchmarks
b1 -b4 and b6 are mostly in the first bucket. Although DLNS has relatively high pairwise
distance (see Table 4), its effectiveness against code-reuse attacks is low. This is because

1490



Constraint-based Diversification of JOP Gadgets

Table 7: Gadget survival rate for 10% optimality gap with Hamming distance for RS, LNS,
and DLNS - 10 to 100 MIR instructions

ID
RS LNS DLNS

=0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num

b1 34 13 19 33 200 85 12 2 - 200 50 24 25 1 200
b2 86 7 5 1 200 88 1 11 1 200 83 1 11 5 200
b3 84 11 5 - 200 90 3 6 - 200 88 4 7 1 200
b4 92 7 1 - 200 95 4 1 - 200 52 38 8 3 200
b5 2 5 48 45 200 14 14 51 21 200 - 13 44 43 200
b6 74 18 8 - 200 92 3 5 - 200 92 3 4 1 200
b7 - 26 72 2 200 87 11 2 - 200 7 23 52 18 200
b8 - 36 63 1 200 88 10 2 - 200 7 22 48 23 200
b9 - 10 83 8 200 57 24 18 1 200 3 11 49 36 200
b10 68 2 11 19 3 98 - 1 1 200 22 1 6 71 200
b11 - 72 28 - 200 73 23 3 - 200 4 5 41 51 200
b12 - - 99 1 200 80 18 2 - 200 1 8 59 32 187
b13 26 9 35 30 200 92 4 3 - 200 31 11 19 39 149
b14 - - 98 2 200 77 21 2 - 200 - 3 61 36 179

Table 8: Gadget survival rate for 10% optimality gap with Hamming distance for RS, LNS,
and DLNS - 100 to 1000 MIR instructions

ID
RS LNS DLNS

=0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num

b15 98 - 2 - 7 99 1 - - 118 43 2 7 47 188
b16 - - - - - 98 2 - - 71 - 1 33 66 200
b17 30 13 47 10 200 87 6 6 1 42 15 10 35 40 173
b18 - - - - - - - - - - - - 2 98 187
b19 18 27 52 3 200 - - - - - 1 - 40 60 200
b20 Unison and DivCon cannot handle this function.

in many small programs with a large number of basic blocks, the number of registers that
are shared among different basic blocks (and thus assigned by the global problem, see
Algorithm 2) is high, resulting in low diversity of the register allocation among variants.

Conclusion. The LNS diversification algorithm is significantly more effective than both
DLNS and RS at generating binary variants that share a minimal number of JOP gadgets.

4.5 RQ4. JOP Attacks Mitigation: Effectiveness of Different Distance
Measures

Section 4.3 shows that Hamming Distance (HD), δHD, is the most scalable distance measure
followed closely by the second configuration of Gadget Distance (GD), δ0,8

GD. This section
investigates the impact of the distance measure on the effectiveness of DivCon against JOP
attacks.

Table 9 shows the gadget-replacement effectiveness of DivCon using distances: δHD,
δLD, δ0,2

GD, and δ0,8
GD. The time limit for this experiment is ten minutes and the optimality

1491



Tsoupidi, Castañeda Lozano, & Baudry

gap is 10%. This experiment uses LNS as the diversification algorithm because, as we have
seen in Section 4.4, LNS is more effective against JOP attacks than DLNS.

The results for the Hamming Distance (HD), δHD, are in the first column of the table.
For all benchmarks, except b5, the highest values are under the first subcolumn. This
means that a large proportion of the variant pairs do not share any gadgets, which is a
strong indication of JOP attack mitigation. In particular, the most frequent values range
from 57 to 98 percent. Benchmark b5 has weak diversification capability due to hard
constraints in register allocation (see Section 4.4).

The results for Levenshtein Distance, δLD, appear in the second column of the table.
Similar to HD, almost all benchmarks, where DivCon generates at least two variants, have
their most common value in the first subcolumn except for b5. These values range from 51%
to 85%, which corresponds to poorer gadget diversification effectiveness than using δHD.
As discussed in Section 4.3, DivCon using Levenshtein Distance is not able to generate the
maximum requested number of variants (200) within the time limit of ten minutes for any
of the benchmarks.

The third column of Table 9 shows the results for Gadget Distance (GD) with parameters
nr = 0 and nc = 2. Parameter nr = 0 enforces diversity of the register allocation for the
instructions that are issued on the same cycle as the branch instruction. Similarly, parameter
nc = 2 enforces diversity for the instruction schedule of the instructions preceding the branch
instruction by at most two cycles. Distance δ0,2

GD measures the sum of these two constraints
(and enforces it to be greater than h = 1) for all branch instructions of the benchmark
in question. DivCon with this distance measure has very high effectiveness against JOP
attacks, with the most frequent values ranging from 65 to 100 percent. However, using δ0,2

GD,
DivCon is not able to generate a large number of variants for almost half of the benchmarks.

The last distance measure, δ0,8
GD, differs from δ0,2

GD in that it allows diversifying the
instruction schedule for a larger number of instructions preceding the branch instruction,
i.e. nc = 8. Here, the most common values range from 48 to 99 percent for different
benchmarks and the scalability is satisfiable with DivCon being able to generate the total
number of requested variants for almost all the benchmarks. Using δ0,8

GD, DivCon improves
the gadget diversification efficiency of the overall fastest distance measure, δHD, for all
benchmarks except b3, where the difference is very small. The largest improvement is for
b9 and b5. For b9 the most frequent value is 57% with δHD and gets improved to 66% with
δ0,8
GD. For b5 the majority of the variant pairs are under the third bucket, which corresponds

to the weak (10% − 40%]-survival rate with δHD and under the first bucket (column =0 )
with δ0,8

GD, which is a significant improvement.

Conclusion. Distances δHD and δ0,8
GD are both appropriate distances for our application,

trading scalability with security effectiveness. DivCon using δHD has better scalability than
using δ0,8

GD (see Section 4.3), whereas DivCon using δ0,8
GD is more effective against code-reuse

attacks compared to using δHD.

4.6 RQ5. JOP Attacks Mitigation: Effectiveness for Different Optimality Gaps

This section investigates the trade-off between code quality and diversity and evaluates the
effectiveness of DivCon against code-reuse attacks. Table 10 summarizes the gadget survival
distribution for all benchmarks and different values of the optimality gap (0%, 5%, 10%,

1492



Constraint-based Diversification of JOP Gadgets

Table 9: Gadget survival rate for 10% optimality gap for the distances: δHD, δLD, δ0,2
GD,

and δ0,8
GD

ID
δHD δLD δ0,2GD δ0,8GD

=0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num

b1 85 12 2 - 200 52 30 10 8 29 99 1 - - 200 92 7 1 - 200
b2 88 1 11 1 200 85 - 12 2 37 94 4 2 - 67 90 4 6 - 200
b3 90 3 6 - 200 85 5 9 1 41 95 4 1 - 111 89 6 5 - 200
b4 95 4 1 - 200 85 12 2 1 36 99 1 - - 200 97 3 - - 200
b5 14 14 51 21 200 15 10 32 42 25 65 9 24 2 12 48 28 20 3 178
b6 92 3 5 - 200 84 4 10 2 14 96 3 1 - 187 92 4 4 - 200
b7 87 11 2 - 200 54 28 16 2 10 83 15 2 - 145 87 12 1 - 200
b8 88 10 2 - 200 53 23 20 4 7 87 12 1 - 188 88 11 1 - 200
b9 57 24 18 1 200 51 11 21 17 4 74 15 11 - 52 66 24 10 - 167
b10 98 - 1 1 200 - - - - - 99 - - - 200 99 - 1 1 200
b11 73 23 3 - 200 - - - - - 91 8 1 - 62 79 20 2 - 198
b12 80 18 2 - 200 - - - - - 96 4 - - 83 87 12 1 - 48
b13 92 4 3 - 200 - - - - - 100 - - - 185 97 1 2 - 200
b14 77 21 2 - 141 - - - - - 95 5 - - 44 85 14 1 - 31

and 20%). Based on the results of RQ3, we select LNS for this evaluation because we have
observed that DivCon using LNS is the most effective at diversifying gadgets. Similarly, in
RQ4, we were able to identify that the gadget-specific distance, δ0,8

GD, is the most effective
among the two scalable distance measures at diversifying gadgets. The values in bold
correspond to the mode(s) of the histogram and the time limit for this experiment is ten
minutes.

First, we notice that DivCon with LNS and δ0,8
GD can generate some pairs of variants

that share no gadgets, even without relaxing the constraint of optimality (p = 0%). In
particular, for p = 0%, all benchmarks except b7 are dominated by a 0% survival rate
and only b7 is dominated by a weak (0%− 10%]-survival rate. This indicates that optimal
code naturally includes software diversity that is good for security. For example, DivCon
generates on average 110 solutions for benchmark b6. Comparing pairwise the gadgets for
these solutions, we are able to determine that 91 percent of the solution pairs do not share
any gadgets, whereas five percent of these pairs share up to 10% of the gadgets and four
percent share between 10% and 40% of the gadgets. Furthermore, we can see that for only
two of the benchmarks (b5 and b9 ), DivCon with LNS and δ0,8

GD is unable to generate any
variants, whereas for three of the benchmarks (b1, b3, and b13 ) it generates a large number
of variants without quality loss. Among the benchmarks that are dominated by the first
bucket (0% gadget survival rate), the rates range from 52% up to 100%. These results
indicate that it is possible to achieve high security-aware diversity without sacrificing code
quality.

Second, the results show that the effectiveness of DivCon at diversifying gadgets can be
further increased by relaxing the constraint on code quality, with diminishing returns beyond
p = 10%. Increasing the optimality gap to just p = 5% makes 0% survival rate (column
=0 ) the dominating bucket for all benchmarks except b5. Benchmark b5 is subjected to
hard register allocation constraints, which reduces DivCon’s gadget diversification ability.

1493



Tsoupidi, Castañeda Lozano, & Baudry

Table 10: Gadget survival rate for different optimality gap values of the Gadget Distance
(δ0,8
GD) using LNS

ID
p = 0% p = 5% p = 10% p = 20%

=0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num =0 ≤10 ≤40 ≤100 num

b1 93 3 4 - 200 89 9 2 - 200 92 7 1 - 200 98 1 1 - 200
b2 93 - 7 - 20 90 4 6 - 200 90 4 6 - 200 90 4 5 - 200
b3 80 13 6 1 149 90 5 5 - 200 89 6 5 - 200 93 3 4 - 200
b4 98 1 - - 24 97 3 - - 200 97 3 - - 200 98 2 - - 200
b5 - - - - - 10 13 42 35 29 48 28 20 3 178 66 18 14 2 200
b6 91 5 4 - 110 92 4 4 - 200 92 4 4 - 200 94 3 3 - 200
b7 38 48 14 - 82 85 14 1 - 200 87 12 1 - 200 89 10 1 - 200
b8 60 30 10 - 40 89 10 1 - 200 88 11 1 - 200 90 9 1 - 200
b9 - - - - - 59 28 13 - 171 66 24 10 - 167 66 23 11 - 167
b10 75 3 3 19 4 99 - 1 1 200 99 - 1 1 200 99 - - - 193
b11 84 14 2 - 87 82 17 2 - 190 79 20 2 - 198 84 14 1 - 199
b12 82 15 3 - 12 90 9 1 - 36 87 12 1 - 48 90 9 1 - 57
b13 100 - - - 175 96 1 2 - 200 97 1 2 - 200 97 1 1 - 200
b14 52 41 7 - 3 88 11 1 - 25 85 14 1 - 31 91 8 1 - 44

The rate of the variant pairs that do not share any variants ranges from 59 percent for b9
to 99 percent for b10. Further increasing the gap to 10% and 20% increases significantly
the number of pairs that share no gadgets (column =0 ). For example, with an optimality
gap of p = 10%, the dominating bucket for all benchmarks corresponds to 0% survival
rate (column =0 ) and ranges from 48% (b5 ) to 99% (b10 ) of the total solution pairs. An
optimality gap of p = 20% improves further the effectiveness of DivCon. The improvement
is substantial for benchmark b5, where the register allocation of this benchmark is highly
constrained. Larger optimality gap allows the generation of more solutions that differ with
regards to the instructions schedule. This leads to an improvement indicated by an increase
in the rate of the first bucket (column =0 ) from 48% for p = 10% to 66% for p = 20%.

Related approaches (discussed in Section 5) report the average gadget elimination rate
across all pairs for different benchmark sets. The zero-cost approach of Pappas et al. (2012)
achieves an average gadget elimination rate between 74%− 83% without code degradation,
comparable to DivCon’s 93% − 100% at p = 0% (including only benchmarks for which
DivCon generates variants). Homescu et al. (2013) propose a statistical approach that
reports an average srate between 82% − 100% with a code degradation of less than 5%,
comparable to DivCon’s 62%− 100% at p = 5%. Both approaches report results on larger
code bases that exhibit more opportunities for diversification. We expect that DivCon would
achieve higher overall survival rates on these code bases compared to the benchmarks used
in this paper as we can see in case study of RQ6 (Section 4.7).

Conclusion. Empirical evidence shows that DivCon with the LNS algorithm and distance
measure δ0,8

GD achieves high JOP gadget diversification rate without sacrificing code quality.
Increasing the optimality gap to just 5% improves the effectiveness of DivCon significantly,
while further increase in the optimality gap does not have a similarly large effect on gadget
diversity.

1494



Constraint-based Diversification of JOP Gadgets

Table 11: G.721 functions

ID app module function name #blocks #instructions LNS time (s) DLNS time (s)
g1 g721 g711 ulaw2linear 1 14 0.4 ± 0.0 7.8 ±0.0
g2 g721 g711 alaw2ulaw 4 19 0.8 ± 0.0 52.6 ±0.0
g3 g721 g711 ulaw2alaw 4 22 1.3 ± 0.0 34.8 ±0.0
g4 g721 g711 alaw2linear 6 23 0.9 ± 0.0 22.5 ±0.0
g5 g721 g72x reconstruct 4 24 0.8 ± 0.0 22.4 ±0.0
g6 g721 g72x step size 7 27 3.2 ± 0.0 7.1 ±0.0
g7 g721 g72x predictor pole 1 28 2.4 ± 0.0 15.8 ±0.0
g8 g721 g72x g72x init state 1 29 1.1 ± 0.0 3.1 ±0.0
g9 g721 g711 linear2ulaw 11 54 6.0 ± 0.0 9.1 ±0.0
g10 g721 g711 linear2alaw 13 60 30.5 ± 0.0 6.7 ±0.0
g11 g721 g72x tandem adjust ulaw 9 75 140.8 ± 0.8 6.8 ±0.0
g12 g721 g72x predictor zero 1 77 43.8 ± 0.1 5.3 ±0.0
g13 g721 g72x tandem adjust alaw 13 89 182.1 ± 0.9 8.1 ±0.0
g14 g721 g72x quantize 23 99 246.2 ± 0.2 17.9 ±0.0
g15 g721 g721 g721 encoder 7 135 214.7 ± 0.4 11.0 ±0.0
g16 g721 g721 g721 decoder 7 135 323.3 ± 6.3 10.7 ±0.0
g17 g721 g72x update 105 523 - 128.0±1.1
g18 main main main 9 40 7.3 ± 0.0 7.8 ±0.0
g19 main main pack output 3 23 0.8 ± 0.0 6.5 ±0.0
g20 stubs stubs nmi handler 2 1 - (1) - (1)
g21 stubs stubs on bootstrap 1 1 - (1) - (1)
g22 stubs stubs on reset 1 1 - (1) - (1)

4.7 RQ6. Case Study: Effectiveness of DivCon at the Application Level

DivCon operates at the function level. In this section, we evaluate the effectiveness of
DivCon against JOP attacks for programs that consist of multiple functions. To do that,
we study an application from MediaBench I and evaluate it using the JOP gadget survival
rate as in RQ3, RQ4, and RQ5. To diversify a program, we diversify the functions that
comprise this program and then combine them randomly. This approach results in up to
nf different variants, where n is the number of variants per function and f the number of
functions in the program. If we also perform function permutation, the number of possible
program variants increases to f ! · nf .

We apply these methods on G.721, an application of the MediaBench I benchmark
suite (Lee et al., 1997). This application is an implementation of the International Telegraph
and Telephone Consultative Committee (CCITT) G.711, G.721, and G.723 voice compres-
sion algorithms. We compile G.721 for the MIPS32-based Pic32MX microcontroller5.

Table 11 shows 1) the functions that comprise the G.721 application, 2) a custom main

function6 that performs encoding, and 3) a number of required system functions, stubs.
The columns show the number of basic blocks (#blocks), the number of MIR instructions
(#instructions) and the diversification time in seconds for generating 200 variants using LNS
(LNS time (s)) and DLNS (DLNS time (s)) after running the experiment five times with

5. PIC32MX Microprocessor Family: https://www.microchip.com/en-us/products/

microcontrollers-and-microprocessors/32-bit-mcus/pic32-32-bit-mcus/pic32mx

6. The main function is a simplified version of the encoding example that g721 provides.

1495



Tsoupidi, Castañeda Lozano, & Baudry

Table 12: Gadget survival rate for 10% optimality gap with the Hamming distance, δHD,
for the G.721 application with function randomization at link level (FS) and without (NFS)

App
NFS FS

=0 ≤0.5 ≤1 ≤2 ≤5 ≤10 ≤40 ≤100 num =0 ≤0.5 ≤1 ≤2 ≤5 ≤10 ≤40 ≤100 num

G.721 85 12 1 1 - - - - 200 98 2 - - - - - - 200

the same random seed (seed = 42). The stubs functions consist of two empty functions
(on reset and on bootstrap) and one function (nmi handler) that contains one empty
infinite loop. These functions contain only one MIR instruction each, and, therefore, there
are no variants within a 10% optimality gap. We diversify the rest of the functions using
DivCon with 0.5 relax rate, 10% optimality gap, and a time limit of 20 minutes. We run
the experiment using the same random seed for DivCon and the function randomization.
For the cases that LNS manages to generate all variants (all but g17 ), we use the LNS-
generated variants and for the rest of the benchmarks (g17 ), we use DLNS. For compiling
the application, we generate the textual assembly code of the function variants using DivCon
and llc. To compile and link the application, we use a Pic32MX microcontroller toolchain7

that uses gcc. To deactivate instruction reordering by gcc, llc sets the noreorder directive.

For combining the functions in the final binaries, we use two approaches, 1) No Function
Shuffling (NFS), which generates the binary combining the different function variants in
the same order and 2) Function Shuffling (FS), which randomizes the function order at the
linking time.

Table 12 shows the results of the diversification of G.721 using the NFS and FS schemes
after generating 200 variants of the G.721 application. The results show that combining
the diversified variants without shuffling the functions at link time (NFS) results in most of
the variants, 85% of the pairs, sharing no gadgets, while 12% share between 0% and 0.5%
of the gadgets. We calculate the average of gadget survival rate over the variant pairs as
0.068±0.128%. Using function shuffling at link time (FS) results in 0.008±0.008% average
gadget survival rate, with 98% of all variant pairs not sharing any gadget (first bucket).
This shows that the fine-grained diversification of DivCon using function shuffling improves
further the result for NFS.

Conclusion. In this case study, we show that with our method, we are able to diversify
whole programs and not just functions. Additionally, we show that randomly combining
the diversified functions using DivCon achieves the diversification and/or relocation of JOP
gadgets with an average of less than 0.1% survival rate in a multi-function program. Func-
tion shuffling reduces further the gadget survival rate to approximately 0.01% survival rate,
indicating that hardly any variant pairs share gadgets.

4.8 Discussion

This section discusses two main topics, 1) the use of DivCon against more advanced attacker
models, and 2) scalability limitations of our approach and how to address them.

7. https://github.com/is1200-example-projects/mcb32tools

1496



Constraint-based Diversification of JOP Gadgets

Advanced code-reuse attacks. Our attack model considers basic-ROP/JOP attacks.
However, in literature there exist more advanced attacks, like JIT-ROP (Snow et al., 2013),
where the attacker is able to read the code from the memory and identify gadgets dur-
ing the attack. Static diversification of a binary is not effective against these types of
attacks. Instead, some approaches (Chen, Wang, Whalley, & Lu, 2016; Williams-King,
Gobieski, Williams-King, Blake, Yuan, Colp, Zheng, Kemerlis, Yang, & Aiello, 2016) use
re-randomization, a technique to re-randomize the binary by switching between variants of
the code at run time. Using our approach, it is possible to perform re-randomization of an
application by switching between different function variants that DivCon generates.

Large Functions. Unison is not scalable to large functions for MIPS (Castañeda Lozano
et al., 2019) and in this paper we have evaluated DivCon for functions up to 523 lines of
LLVM MIR instructions. However, there are functions that are larger than what Unison
supports. In particular, in MediaBench I, approximately 7% of the functions contain more
than 500 instructions. For these cases, one may use other diversification schemes for just
these functions and DivCon for the rest of the functions. Another approach is to deactivate
some of the transformations that Unison and DivCon perform for larger benchmarks or
improve the scalability of Unison (Castañeda Lozano et al., 2019). We leave this as future
work.

5. Related Work

State of the art software diversification techniques apply randomized transformations at
different stages of the software development. Only a few exceptions use search-based tech-
niques (Larsen et al., 2014). This section focuses on quality-aware software diversification
approaches.

Superdiversifier (Jacob et al., 2008) is a search-based approach for software diversifica-
tion against cyberattacks. Given an initial instruction sequence, the algorithm generates a
random combination of the available instructions and performs a verification test to quickly
reject non equivalent instruction sequences. For each non-rejected sequence, the algorithm
checks semantic equivalence between the original and the generated instruction sequences
using a SAT solver. Superdiversifier affects the code execution time and size by controlling
the length of the generated sequence. A recent approach, Crow (Arteaga et al., 2021),
presents a superdiversification approach as a security mitigation for the Web. Along the
same lines, Lundquist et al. (2016, 2019) use program synthesis for generating program
variants against cyberattacks, but no results are available, yet. In comparison, DivCon uses
a combinatorial compiler backend that measures the code quality using a more accurate
cost model that also considers other aspects, such as execution frequencies.

Most diversification approaches use randomized transformations in the stack (Lee, Kang,
Jang, & Kang, 2021), on binary code (Wartell et al., 2012; Abrath et al., 2020), at the bi-
nary interface level (Kc, Keromytis, & Prevelakis, 2003), in the compiler (Homescu, Jackson,
Crane, Brunthaler, Larsen, & Franz, 2017) or in the source code (Baudry, Allier, & Mon-
perrus, 2014) to generate multiple program variants. Unlike DivCon, the majority of these
approaches do not control the quality of the generated variants during diversification but
rather evaluate it afterwards (Davi et al., 2013; Wang et al., 2017; Koo et al., 2018; Homescu

1497



Tsoupidi, Castañeda Lozano, & Baudry

et al., 2017; Braden et al., 2016; Crane et al., 2015). However, there are a few approaches
that control the code quality during randomization.

Some compiler-based diversification approaches restrict the set of program transforma-
tions to control the quality of the generated code (Crane et al., 2015; Pappas et al., 2012).
For example, Pappas et al. (2012) perform software diversification at the binary level and
apply three zero-cost transformations: register randomization, instruction schedule random-
ization, and function shuffling. In contrast, DivCon’s combinatorial approach allows it to
control the aggressiveness and potential cost of its transformations: a cost overhead limit
of 0% forces DivCon to apply only zero-cost transformations; a larger limit allows DivCon
to apply more aggressive transformations, potentially leading to higher diversity.

Homescu et al. (2013) perform only garbage (nop) insertion, and use a profile-guided
approach to reduce the overhead. To do this, they control the nop insertion probability
based on the execution frequency of different code sections. In contrast, DivCon’s cost
model captures different execution frequencies, which allows it to perform more aggressive
transformations in non-critical code sections.

6. Conclusion

This paper introduces DivCon, a constraint-based code diversification technique against
code-reuse attacks. The key novelty of this approach is that it supports a systematic
exploration of the trade-off between code diversity and code size and speed. Our experiments
show that Large Neighborhood Search (LNS) is an effective algorithm to explore the space
of diverse binary programs, with a fine-grained control on the trade-off between code quality
and JOP gadgets diversification. In particular, we show that the set of optimal solutions
naturally contains a set of diverse solutions, which increases significantly when relaxing
the constraint of optimality. For improving the effectiveness of our approach against JOP
attacks, we propose a novel gadget-specific distance measure. Our experiments demonstrate
that the diverse solutions generated by DivCon using this distance measure are highly
effective to mitigate JOP attacks.

Acknowledgments

We would like to give a special acknowledgment to Christian Schulte, for his critical contri-
bution at the early stages of this work. Although no longer with us, Christian continues to
inspire his students and colleagues with his lively character, enthusiasm, deep knowledge,
and understanding. We would also like to thank Linnea Ingmar and the anonymous review-
ers of CP2020 and JAIR for their useful feedback, and Oscar Eriksson for proof reading.
This work is partially supported by the Wallenberg AI, Autonomous Systems, and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation and by the TrustFull
project funded by the Swedish Foundation for Strategic Research.

Appendix A. Relax Rate Selection

The LNS configuration of DivCon requires selecting the relax rate. The relax rate is the
probability that LNS destroys a variable at every restart, which affects the distance between

1498



Constraint-based Diversification of JOP Gadgets

two subsequent solutions. A higher relax rate increases diversity but requires more solving
effort.

In LNS, the relax rate, r, affects how many of the assigned variables of the last solution
LNS destroys for finding the next solution. To evaluate that, we use two metrics and RS
as a baseline. Pδ and Pt correspond to the rate of the LNS over RS with regards to the
pairwise distance and the diversification time as follows:

Pδ(δ, S1, S2) =





d(δ, S1)

d(δ, S2)
, d(δ, S1) > d(δ, S2)

d(δ, S2)

d(δ, S1)
, otherwise

(8)

and

Pt(t1, t2) =





t1
t2
, t1 > t2

t2
t1
, otherwise

, (9)

where t1 is the diversification time for generating the solution set S1 for RS and t2 is the
diversification time for generating the solution set S2 for LNS.

Figure 6 depicts the effect of different relax rates on the distance, Pδ, and the diversifi-
cation time, Pt, when generating 200 variants for the 14 benchmarks of Table 2. The figure
shows the results for each of the benchmarks as a separate colored line with the correspond-
ing standard deviation shown in light color. The time limit is ten minutes and the distance
measure is Hamming Distance (HD), δHD. Figure 6a shows that increasing the relax rate
increases the pairwise distance improvement, Pδ, of the generated program variants. Fig-
ure 6b shows the diversification time overhead Pt. This figure shows that low values and
large values of r have large time overhead compared to RS, whereas values r = 0.3, r = 0.4,
r = 0.5, and r = 0.6 have acceptable time overhead. As we have seen in Figure 6a, the
larger the relax rate, the higher the diversity improvement for LNS compared to RS. Im-
proved diversity can be achieved by increasing the relax rate, whereas, moderate relax rate
improves scalaility. Therefore, r = 0.6 is a good trade-off between diversity and scalability.
Ultimately, we would like to automatically select the relax rate that fits a specific function.
We leave this as a future work.

Appendix B. Diversification Example

This section shows a more elaborated example of diversified code using DivCon. Figure 7
shows two variants of function ulaw2alaw from application g721. This function converts
u-law (µ-law) values to a-law (A-law) values. Algorithms µ-law and A-law are the two main
companding algorithms of G.711 (ITU, 1993).

The two variants, Listing 7a and Listing 7b, are generated by DivCon with relax rate
0.6, optimality gap 10%, and the cycle hamming distance, δHD. Figure 7 highlights four
different ways in which the two variants differ.

First, DivCon may add no-operation instructions that affect the memory layout but not
the semantics of the program. Interestingly, DivCon added an empty stack frame to Variant
2. The prologue (line 13 in Variant 2) and epilogue (line 42 in of Variant 2) instructions

1499



Tsoupidi, Castañeda Lozano, & Baudry

0.1 0.2 0.4 0.6 0.8
relax rate

10
1

10
20

50

80

P
(

H
D
,S

LN
S,

S R
S) LNS over RS

(a) Diversity improvement

0.1 0.2 0.4 0.6 0.8
relax rate

10
1

10
20

50

100

P t
(t L

SN
,t

RS
) LNS over RS

(b) Diversification time overhead

Figure 6: Improvement in diversity and diversification time overhead of LNS over RS for
different values of the relax rate and the Hamming Distance δHD

that build and destroy the empty stack frame are no-operations, however they contribute
to the diversification of the function. Otherwise, DivCon adds MIPS nop instructions to fill
the instruction schedule empty slots including the instruction delays due to their execution
latency (see lines 19 and 20 of Variant 1). DivCon may add no-operations as long as the
overhead they introduce does not exceed the allowed optimality gap.

Another transformation is the addition of copy operations to move data from one register
to the other (highlighted at line 16 of Variant 1). This transformation assists register
renaming, which improves diversification.

The third transformation that we have highlighted (lines 18-21 of Variant 1 and lines
17-18 of Variant 2) is instruction reordering. Here, whenever there is no data dependency
between the instructions, the order of the instructions might change. Instruction reordering
may break gadgets because the attacker expects a different instruction than the reordered
instruction that is present at the same address.

Finally, the register assignment of different operations differs, with an example high-
lighted at line 26 of Variant 1 and line 25 of Variant 2. Register renaming breaks the
attacker assumptions about the register that each gadget affects and uses. Other transfor-
mations, like spilling to the stack, are also possible. The function of Figure 7 is small and
does not require spilling. However, DivCon may enable spilling if the overhead is not more
than the allowed optimality gap (10% here).

Figure 7 shows some of the gadgets that are available in function ulaw2alaw surrounded
in dotted rectangles. Interestingly, both variants contain a number of gadgets that all
include the last gadget. This last gadget consists of a return jump, jr, and its delay slot,
i.e. the instruction that follows the branch but is executed before it. No pair of gadgets in
the two variants is identical with regards to either the content or the position in the code.

1500



Constraint-based Diversification of JOP Gadgets

1 ulaw2alaw:

# @ulaw2alaw

2 .frame $sp ,0,$ra

3 .mask 0x00000000 ,0

4 .fmask 0x00000000 ,0

5 .set noreorder

6 .set nomacro

7 .set noat

8 # BB #0:

9 lui $v0 , _gp_disp

10 nop

11 addiu $v0 , $v0 , _gp_disp

12 andi $a2 , $a0 , 128

13 beqz $a2 , $BB0_2

14 addu $t7 , $v0 , $t9

15 # BB #1:

16 move $t9 , $a0

17 move $fp , $t9

18 lw $t2 , _u2a($t7)

19 nop

20 nop

21 xori $t5 , $fp , 255

22 addu $t8 , $t2 , $t5

23 lbu $a1 , 0($t8)

24 nop

25 nop

26 addiu $t8, $a1 , -1

27 b $BB0_3

28 xori $a0 , $t8 , 213

29 $BB0_2:

30 lw $v0 , _u2a($t7)

31 nop

32 nop

33 xori $a1 , $a0 , 127

34 addu $t0 , $v0 , $a1

35 lbu $t3 , 0($t0)

36 nop

37 nop

38 move $t6 , $t3

39 move $a0 , $t6

40 addiu $fp , $a0 , -1

41 xori $a0 , $fp , 85

42 $BB0_3:

43 jr $ra

44 andi $v0 , $a0 , 255

(a) g721.g711.ulaw2alaw - Variant 1

1 ulaw2alaw:

# @ulaw2alaw

2 .frame $sp ,0,$ra

3 .mask 0x00000000 ,0

4 .fmask 0x00000000 ,0

5 .set noreorder

6 .set nomacro

7 .set noat

8 # BB #0:

9 lui $v0 , _gp_disp

10 nop

11 addiu $v0 , $v0 , _gp_disp

12 andi $fp , $a0 , 128

13 addiu $sp , $sp , 0

14 beqz $fp , $BB0_2

15 addu $a1 , $v0 , $t9

16 # BB #1:

17 xori $t5 , $a0 , 255

18 lw $t6 , _u2a($a1)

19 nop

20 nop

21 addu $v0 , $t6 , $t5

22 lbu $t1 , 0($v0)

23 nop

24 nop

25 addiu $t3, $t1 , -1

26 b $BB0_3

27 xori $fp , $t3 , 213

28 $BB0_2:

29 xori $a3 , $a0 , 127

30 lw $t4 , _u2a($a1)

31 nop

32 nop

33 addu $gp , $t4 , $a3

34 lbu $t2 , 0($gp)

35 nop

36 nop

37 addiu $t6 , $t2 , -1

38 xori $fp , $t6 , 85

39 $BB0_3:

40 andi $v0 , $fp , 255

41 jr $ra

42 addiu $sp , $sp , 0

43 .set at

44 .set macro

gadgets

register
renaming

instruction
reordering

copy

nop

(b) g721.g711.ulaw2alaw - Variant 2

Figure 7: Example function diversification in MIPS32 assembly code

References

Abrath, B., Coppens, B., Mishra, M., den Broeck, J. V., & Sutter, B. D. (2020). Break-
pad: Diversified binary crash reporting. IEEE Transactions on Dependable Secure
Computing, 17 (4), 841–856.

Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of Things
security: A survey. Journal of Network and Computer Applications, 88, 10–28.

1501



Tsoupidi, Castañeda Lozano, & Baudry

Arteaga, J. C., Malivitsis, O. F., Pérez, O. L. V., Baudry, B., & Monperrus, M. (2021).
Crow: Code diversification for webassembly. In MADWeb’21-NDSS Workshop on
Measurements, Attacks, and Defenses for the Web.

Ashouri, A. H., Killian, W., Cavazos, J., Palermo, G., & Silvano, C. (2018). A survey
on compiler autotuning using machine learning. ACM Computing Surveys (CSUR),
51 (5), 1–42.

Baudry, B., Allier, S., & Monperrus, M. (2014). Tailored source code transformations to
synthesize computationally diverse program variants. In Proc. of ISSTA, pp. 149–159.

Baudry, B., & Monperrus, M. (2015). The Multiple Facets of Software Diversity: Recent
Developments in Year 2000 and Beyond. ACM Comput. Surv., 48 (1), 16:1–16:26.

Birman, K. P., & Schneider, F. B. (2009). The monoculture risk put into context. IEEE
Security & Privacy, 7 (1), 14–17.

Bletsch, T., Jiang, X., Freeh, V. W., & Liang, Z. (2011). Jump-oriented Programming:
A New Class of Code-reuse Attack. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’11, pp. 30–40, New
York, NY, USA. ACM.

Braden, K., Crane, S., Davi, L., Franz, M., Larsen, P., Liebchen, C., & Sadeghi, A.-R.
(2016). Leakage-Resilient Layout Randomization for Mobile Devices. In Proceedings
2016 Network and Distributed System Security Symposium, San Diego, CA. Internet
Society.

Castañeda Lozano, R., Carlsson, M., Blindell, G. H., & Schulte, C. (2019). Combinatorial
Register Allocation and Instruction Scheduling. ACM Trans. Program. Lang. Syst.,
41 (3), 17:1–17:53.

Castañeda Lozano, R., Carlsson, M., Drejhammar, F., & Schulte, C. (2012). Constraint-
Based Register Allocation and Instruction Scheduling. In Milano, M. (Ed.), Principles
and Practice of Constraint Programming, Lecture Notes in Computer Science, pp.
750–766, Berlin, Heidelberg. Springer.

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., & Winandy, M.
(2010). Return-oriented Programming Without Returns. In Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS ’10, pp. 559–572,
New York, NY, USA. ACM.

Chen, Y., Wang, Z., Whalley, D., & Lu, L. (2016). Remix: On-demand Live Randomization.
In Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, CODASPY ’16, pp. 50–61, New York, NY, USA. Association for Computing
Machinery.

Chu, G. G. (2011). Improving combinatorial optimization. Ph.D. thesis, The University of
Melbourne, Australia.

Cohen, F. B. (1993). Operating system protection through program evolution.. Comput.
Secur., 12 (6), 565–584.

Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A., Brunthaler, S.,
& Franz, M. (2015). Readactor: Practical Code Randomization Resilient to Memory
Disclosure. In 2015 IEEE Symposium on Security and Privacy, pp. 763–780.

1502



Constraint-based Diversification of JOP Gadgets

Davi, L. V., Dmitrienko, A., Nrnberger, S., & Sadeghi, A.-R. (2013). Gadge me if you
can: secure and efficient ad-hoc instruction-level randomization for x86 and ARM.
In Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security, pp. 299–310. tex.organization: ACM.

Forrest, S., Somayaji, A., & Ackley, D. H. (1997). Building diverse computer systems.
In Proceedings. The Sixth Workshop on Hot Topics in Operating Systems (Cat. No.
97TB100133), pp. 67–72. IEEE.

Gecode Team (2020). Gecode: Generic constraint development environment. Online:
https://www.gecode.org.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell system
technical journal, 29 (2), 147–160.

Hebrard, E., Hnich, B., O’Sullivan, B., & Walsh, T. (2005). Finding Diverse and Similar So-
lutions in Constraint Programming. In National Conference on Artificial Intelligence
and the Seventeenth Innovative Applications of Artificial Intelligence Conference, p. 6.

Homescu, A., Jackson, T., Crane, S., Brunthaler, S., Larsen, P., & Franz, M. (2017). Large-
Scale Automated Software Diversity—Program Evolution Redux. IEEE Transactions
on Dependable and Secure Computing, 14 (2), 158–171.

Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., & Franz, M. (2013). Profile-guided
Automated Software Diversity. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), CGO ’13, pp. 1–11, Wash-
ington, DC, USA. IEEE Computer Society.

Ingmar, L., de la Banda, M. G., Stuckey, P. J., & Tack, G. (2020). Modelling diversity of
solutions. In Proceedings of the thirty-fourth AAAI conference on artificial intelligence.

ITU, T. (1993). General aspects of digital transmission systems. ITU-T Recommendation
G, 729.

Jacob, M., Jakubowski, M. H., Naldurg, P., Saw, C. W. N., & Venkatesan, R. (2008). The
Superdiversifier: Peephole Individualization for Software Protection. In Matsuura, K.,
& Fujisaki, E. (Eds.), Advances in Information and Computer Security, Lecture Notes
in Computer Science, pp. 100–120, Berlin, Heidelberg. Springer.

Kc, G. S., Keromytis, A. D., & Prevelakis, V. (2003). Countering code-injection attacks
with instruction-set randomization. In Proc. of CCS, pp. 272–280.

Koo, H., Chen, Y., Lu, L., Kemerlis, V. P., & Polychronakis, M. (2018). Compiler-Assisted
Code Randomization. In 2018 IEEE Symposium on Security and Privacy (SP), pp.
461–477.

Kornau, T., et al. (2010). Return oriented programming for the ARM architecture. Master’s
thesis, Ruhr-Universität Bochum.

Krueger, C. W. (1992). Software reuse. ACM Comput. Surv., 24 (2), 131–183.

Larsen, P., Homescu, A., Brunthaler, S., & Franz, M. (2014). SoK: Automated Software
Diversity. In 2014 IEEE Symposium on Security and Privacy, pp. 276–291.

Lattner, C., & Adve, V. (2004). LLVM: A compilation framework for lifelong program
analysis & transformation. In Code Generation and Optimization. IEEE.

1503



Tsoupidi, Castañeda Lozano, & Baudry

Lee, C., Potkonjak, M., & Mangione-Smith, W. H. (1997). MediaBench: A tool for eval-
uating and synthesizing multimedia and communicatons systems. In International
Symposium on Microarchitecture, pp. 330–335. IEEE.

Lee, S., Kang, H., Jang, J., & Kang, B. B. (2021). Savior: Thwarting stack-based memory
safety violations by randomizing stack layout..

Lundquist, G. R., Bhatt, U., & Hamlen, K. W. (2019). Relational processing for fun and di-
versity. In Proceedings of the 2019 miniKanren and relational programming workshop,
p. 100.

Lundquist, G. R., Mohan, V., & Hamlen, K. W. (2016). Searching for Software Diversity:
Attaining Artificial Diversity Through Program Synthesis. In Proceedings of the 2016
New Security Paradigms Workshop, NSPW ’16, pp. 80–91, New York, NY, USA.
ACM.

Pappas, V., Polychronakis, M., & Keromytis, A. D. (2012). Smashing the Gadgets: Hin-
dering Return-Oriented Programming Using In-place Code Randomization. In 2012
IEEE Symposium on Security and Privacy, pp. 601–615.

Petit, T., & Trapp, A. C. (2015). Finding Diverse Solutions of High Quality to Constraint
Optimization Problems. In Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence.

Salehi, M., Hughes, D., & Crispo, B. (2019). Microguard: Securing bare-metal microcon-
trollers against code-reuse attacks. In 2019 IEEE Conference on Dependable and
Secure Computing (DSC), pp. 1–8. IEEE.

Salwan, J. (2020). ROPgadget Tool. Online: http://shell-storm.org/project/ROPgadget/.

Shacham, H. (2007). The Geometry of Innocent Flesh on the Bone: Return-into-libc With-
out Function Calls (on the x86). In Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS ’07, pp. 552–561, New York, NY, USA.
ACM.

Shaw, P. (1998). Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. In Maher, M., & Puget, J.-F. (Eds.), Principles and Practice of
Constraint Programming — CP98, Lecture Notes in Computer Science, pp. 417–431,
Berlin, Heidelberg. Springer.

Snow, K. Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., & Sadeghi, A. (2013).
Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space Layout
Randomization. In 2013 IEEE Symposium on Security and Privacy, pp. 574–588.

Sweetman, D. (2006). See MIPS Run, Second Edition. Morgan Kaufmann.

Tsoupidi, R. M., Castañeda Lozano, R., & Baudry, B. (2020). Constraint-based software di-
versification for efficient mitigation of code-reuse attacks. In International Conference
on Principles and Practice of Constraint Programming, pp. 791–808. Springer.

Van Hentenryck, P., Coffrin, C., & Gutkovich, B. (2009). Constraint-Based Local Search for
the Automatic Generation of Architectural Tests. In Gent, I. P. (Ed.), Principles and
Practice of Constraint Programming - CP 2009, Lecture Notes in Computer Science,
pp. 787–801. Springer Berlin Heidelberg.

1504



Constraint-based Diversification of JOP Gadgets

Wagner, R. A., & Fischer, M. J. (1974). The string-to-string correction problem. Journal
of the ACM (JACM), 21 (1), 168–173.

Wang, S., Wang, P., & Wu, D. (2017). Composite Software Diversification. In 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp. 284–
294.

Wartell, R., Mohan, V., Hamlen, K. W., & Lin, Z. (2012). Binary Stirring: Self-randomizing
Instruction Addresses of Legacy x86 Binary Code. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pp. 157–168, New
York, NY, USA. ACM.

Williams-King, D., Gobieski, G., Williams-King, K., Blake, J. P., Yuan, X., Colp, P., Zheng,
M., Kemerlis, V. P., Yang, J., & Aiello, W. (2016). Shuffler: Fast and Deployable
Continuous Code Re-Randomization.. pp. 367–382.

1505



Appendix C

Publication 3

121



Vivienne: Relational Verification of Cryptographic
Implementations in WebAssembly

Rodothea Myrsini Tsoupidi
KTH Royal Institute of Technology

Stockholm, Sweden
tsoupidi@kth.se

Musard Balliu
KTH Royal Institute of Technology

Stockholm, Sweden
musard@kth.se

Benoit Baudry
KTH Royal Institute of Technology

Stockholm, Sweden
baudry@kth.se

Abstract—We investigate the use of relational sym-
bolic execution to counter timing side channels in We-
bAssembly programs. We design and implement Vivi-
enne, an open-source tool to automatically analyze We-
bAssembly cryptographic libraries for constant-time
violations. Our approach features various optimizations
that leverage the structure of WebAssembly and au-
tomated theorem provers, including support for loops
via relational invariants. We evaluate Vivienne on 57
real-world cryptographic implementations, including a
previously unverified implementation of the HACL*
library inWebAssembly. The results indicate that Vivi-
enne is a practical solution for constant-time analysis
of cryptographic libraries in WebAssembly.

I. Introduction
The introduction of WebAssembly [1], a portable low-

level language with focus on security and efficiency, has
led to an array of security-sensitive applications. Cryp-
tography libraries such as libsodium [2] and HACL* [3]
are a prime example of such applications. Unfortunately,
WebAssembly programs can be vulnerable to different
types of attacks [4], including timing side channels.

The constant-time programming discipline is a well-
known practice to defend against timing attacks [5], [6].
The main idea is to disallow the program’s control flow
and the memory access patterns that depend on program
secrets. This is surprisingly challenging because many
cryptographic routines are human-written [2], [7], [8] and
thus, prone to errors, while compilers that preserve con-
stant time are yet to emerge [2], [7]. This motivates the
need for verification of constant-time implementations in
WebAssembly.

Drawing on the verification-friendly structure of We-
bAssembly, existing solutions such as CT-wasm [9] enrich
the WebAssembly type system with security annotations
to enforce constant time. The efficiency of CT-wasm comes
at the expense of a conservative analysis, e.g., by consid-
ering the whole memory as secret, thus leading to false
positives or refactoring of constant-time programs. This
paper explores the use of Relational Symbolic Execution
(RelSE) to verify constant-time implementations in We-
bAssembly. The approach relies on an accurate modelling
of the memory and other program optimizations, enabling
a precise analysis that scales to real-world cryptographic

implementations. In summary, this paper offers the fol-
lowing contributions:

• An RelSE-based approach for verifying constant-time
implementations in WebAssembly programs.

• An automated invariant generation technique for an-
alyzing implementations with loops.

• A thorough evaluation on 45 secure implementations
and 12 insecure implementations in WebAssembly,
including the previously non-verified WebAssembly
implementation of HACL* (WHACL*).

• Vivienne, an open-source implementation of the ap-
proach.

II. Problem Setting
This section presents the problem setting, including the

constant-time policy, and background on WebAssembly
and related works.

A. Constant-time Policy
Constant-time programming discipline is a software-

based defense against timing side-channel attacks. This
discipline relies on the constant-time policy [10], which
classifies values as secret (high) and public (low). The
policy constrains the control-flow instructions and the
memory operations to solely depend on public values, thus
disallowing any secret-dependent control-flow instructions
and memory accesses. Intuitively, the policy requires that
any program executions with the same low values execute
the same instructions and yield the same memory access
patterns, independently of high values. This indicates that
execution time of the program is not affected by secret
data.

Listing 1
C function tls1_cbc_remove_padding

1 int tls1_cbc_remove_padding(const SSL *s,
2 SSL3_RECORD *rec, unsigned bs,
3 unsigned mac_size) {
4 int ii, i, j;
5 int l = rec->length;
6 ii = i = rec->data[l-1]; /* padding_length */
7 i++;
8 ...
9 for (j=(int)(l-i); j<(int)l; j++)
10 if (rec->data[j] != ii) /* Incorrect padding */
11 return -1;



12 ...
13 }

Listing 1 reports a code snippet of the OpenSSL’s Lucky
13 timing vulnerability [11] to illustrate the issue. Function
tls1_cbc_remove_padding removes the padding from a
decrypted message that contains the plain text (secret),
the Message Authentication Code (MAC) tag, and the
padding. The size of the padding affects the execution
time, which in turn reveals information about the size of
the plain text. Specifically, rec->data holds the decrypted
message together with the MAC tag and the padding, and
is thus secret. Variables i and ii (line 6) contain the last
item of array rec->data, which holds the padding size.
Hence, the number of iterations of the for loop at line 9
depends on the secret-dependent variable i, which affects
the execution time of the function. Similarly, the guard
of if statement at line 10 depends on ii, which is also
secret. Memory accesses also reveal information through
timing due to the presence of caches. At line 10, the access
to rec->data[j] reveals information about the value of
index j by timing its presence in the cache.
B. WebAssembly

WebAssembly [1] is a stack-based typed low-level lan-
guage serving as backend for both client-side computa-
tions, e.g., web browsers, and server-side computations [4]
including stand-alone applications [12]. With some excep-
tions [8], WebAssembly code is compiler generated, e.g.,
via LLVM with support for C, C++, and Rust. Other
languages, like Python and Julia, also provide support
for WebAssembly. WASI Libc [12] is a library built on
top of WASI system calls to enable I/O and memory
management for WebAssembly programs.

The execution model of WebAssembly [1] consists of
1) an execution stack es that stores the instructions; 2)
a value stack vs that holds the input arguments of the
instructions, 3) a linear memory, and 4) the local and the
global stores. WebAssembly has a structured control flow;
for indirect calls (call_indirect), the call destination
is an index to a function table; for conditional branch
(br_if), the branch destination is an index i to enter
(loop) or exit (block) the ith scope. Memory operations
read from (load) and write to (store) the linear mem-
ory, and global variables are visible to all functions in a
module. A function may also define local variables lvn
including the function parameters. Modules are collections
of functions with their own linear memory, and global
variables [1].

Listing 2 shows an example WebAssembly module. The
code is a simplified compiled version (using clang-10) of
the C code in Listing 1. The code consists of a module
(line 1-33), which imports a memory instance ("_memory")
from another module $env (line 3) and declares function
tls1_cbc_remove_padding (line 4). The function takes
four input parameters of type 32-bit integer and returns
a 32-bit value (line 5). At line 6, the function declares

five local variables and the rest of the function consists of
the function body. The block at line 8 performs multiple
initializations before the beginning of the loop (line 15). At
line 10, instruction local.tee stores the top value of vs
(here rec->data + 1) to lv6 and pushes the same value
back to vs. At line 15, the loop starts by loading lv6
and lv1 to vs. Instruction i32.add adds these two values
and pushes back the result to vs. Finally, instruction
i32.load8_u loads from the linear memory ("_memory")
the value at the index taken from the top of vs, i.e.
the result of the addition. The loop body executes until
instruction br_if, which reads one value from vs; if the
value is non zero (true), the execution breaks out of the
outermost block (lines 8-31), whereas if the value is zero
(false), the execution continues to the next instruction,
br, which unconditionally jumps back to the beginning of
the loop (line 15).

Listing 2
Wasm function tls1_cbc_remove_padding

1 (module
2 ...
3 (import "env" "_memory" (memory (;0;) 2))
4 (func $tls1_cbc_remove_padding (type 2)
5 (param i32 i32 i32 i32) (result i32)
6 (local i32 i32 i32 i32 i32)
7 ...
8 block ;; label = @1
9 ...
10 local.tee 6 ;; tee (rec->data + l)
11 ...
12 local.tee 1 ;; tee (1 - ii)
13 ...
14 block ;; label = @2
15 loop ;; label = @3
16 local.get 6 ;; get l
17 local.get 1 ;; get (j - l)
18 i32.add
19 i32.load8_u ;; load data[j] from memory
20 ...
21 i32.const 1
22 local.set 4 ;; store return value
23 ...
24 local.set 1 ;; j++
25 ...
26 br_if 2 (;@1;) ;; break if j >= l
27 br 0 (;@3;) ;; continue to loop
28 end
29 end
30 ...
31 end
32 ...))

WebAssembly programs may be vulnerable to timing
side-channel attacks. The constant-time policy for We-
bAssembly concerns control-flow instructions, i.e. br_if,
if, br_table, and call_indirect, and the memory op-
erations, i.e. load and store.

C. Related Work
Several works have aimed at improving the security of

WebAssembly [4], [9], [13], [14], [15]. CT-wasm [9] proposes
a type system to check the constant-time policy. Type
checking is very efficient but it suffers from the annotation
burden and the conservative nature of the analysis. In



Wasm
Modules

Security
Policy

Entry
Point

Relational Symbolic
Execution

Invariant
Gener-
ation

Formula
Simpli-
fication

Vivienne

(1)e (2)sat/
unsat

(1)e

(2)sat/
unsat

(1)loc (2)I

SMT Solver
(1)ϕ (2)sat/unsat



Verify
CT!

Fig. 1. Vivienne Architecture

CT-wasm, this is reflected by the treatment of the whole
memory as secret, e.g. requiring that every load operation
returns a high value, which may require refactoring of
the programs to make them amenable to the analysis
(e.g., poly1305_blocks and poly1305_update functions
of a WebAssembly TweetNaCl implementation [8]). Our
approach aims at overcoming these limitations by means of
RelSE, using a more accurate memory model and no exten-
sive annotation burden. Moreover, we expect our analysis
to yield less false positives because it relies on symbolic ex-
ecution which is more precise than security type systems.
For example, an expression such as secret−secret would
be correctly identified as the constant 0. However, as we
will see, our solution comes with a computation cost due
to the increased precision.

Almeida et al. [10] use product programs to verify
constant-time for C implementations. A drawback of ver-
ifying the constant-time policy for high-level languages
is that the analysis does not provide guarantees on the
security of the generated code (see ct_select imple-
mentations [16]). Daniel et al. [16] verify constant-time
programs at the binary level using RelSE. Web browsers
using WebAssembly typically leverage Just-in-time (JIT)
compilation, which does not result in binary file genera-
tion. Moreover, the verification of constant-time at the We-
bAssembly level provides opportunities for optimization
due to WebAssembly’s structured design. HACL* [17] uses
a high-level specification language to generate a formally
verified cryptographic library that is available in different
languages including C and WebAssembly [3].

III. Vivienne: RelSE for WebAssembly
Vivienne analyzes WebAssembly implementations

with respect to constant time. Figure 1 shows a high-
level view of the tool. Vivienne takes three inputs: 1)
the WebAssembly modules containing the functions to
analyze, 2) the security policy annotating the memory
regions and the parameters of the entry function, and 3)
the entry point describing the entry function to analyze.
Then, Vivienne performs RelSE on the entry function,

v (values) ::= hn | ln | c, c ∈ Z, n ∈ N0

ρ (relational values) ::= ⟨v, v⟩
e (expressions) ::= ρ | Add(e, e) | Sub(e, e) | ...

| Le(e, e) | Load(e, µ)
i (instructions) ::= br_if l | ... | load, l ∈ N0

µ (memory) ::= ⊥ | Store(e, e, µ)
st (stack) ::= ∅ | e :: st
pc (path condition) ::= true | e ∧ pc
es (execution stack) ::= ∅ | i :: es
lv (local variables) ::= {lv0 7→ e, ..., lvn 7→ e}

Fig. 2. Symbolic Data Structures

reporting the discovered constant-time vulnerabilities (if
any). We describe the different components of Vivienne
using Listing 2 as a running example.
WebAssembly Modules The modules include the

entry function to verify and its dependencies, possibly
involving different modules. For example, the module in
Listing 2 imports the memory from another module $env
(line 3) and defines function tls1_cbc_remove_padding
(lines 4-28).
Security Policy and Entry Point The security

policy specifies the parts of the memory and the ar-
guments of the entry function that contain public or
secret values. Listing 3 reports the policy for function
tls1_cbc_remove_padding. The policy specifies the bytes
2000 to 2039 (i.e. pointer s) and the memory of struct
rec as public (not shown), and the bytes 2048 to 2111
(i.e. rec->data) as secret, thus reflecting the specification
in Listing 1. Moreover, Vivienne requires the code of
the modules (line 8) and the entry function (lines 9-11).
The latter includes the security policy for its arguments
which can be either concrete or symbolic values. Lines
9–11 specify the concrete and symbolic arguments for
analyzing function tls1_cbc_remove_padding via RelSE.
The function takes four arguments: 1) the memory index
of s; 2) the memory index of struct rec; 3) the block size,
which is a public symbolic value; and 4) the MAC size which
is also a public symbolic value. Vivienne recognizes public
(secret) symbolic values that start with letter l (h).

Listing 3
Security policy and Entry Function

1 (module $env
2 (memory (;0;) $memory (export "_memory") 2)
3 (public (i32.const 2000) (i32.const 2039));;s
4 ...
5 (secret (i32.const 2048) (i32.const 2111));;data
6 )
7 ;;definition of tls1_cbc_remove_padding -Listing 2
8 ...
9 (symb_exec "tls1_cbc_remove_padding"
10 (i32.sconst 2000) (i32.sconst 2040) ;; concrete
11 (i32.sconst l1) (i32.sconst l2)) ;; symbolic

Relational Symbolic Execution Vivienne uses the
above-mentioned inputs to initiate RelSE [18] for the entry



function. RelSE performs symbolic execution on relational
states representing two program executions with identical
public values but different secret values. We now describe
the ingredients underpinning the constant-time analysis
with Vivienne.

a) Symbolic State: A symbolic state σ consists of 1)
the execution stack es, that contains the WebAssembly
instructions, 2) the symbolic stack st, 3) the symbolic
memory µ, 4) the symbolic local (and global) variables lv,
and 5) the path condition pc. Figure 2 summarizes these
five components of a symbolic state σ = ⟨es, st, µ, lv, pc⟩.
By convention, the values starting with h (l) are se-
cret (public). Our symbolic analysis operates on pairs of
symbolic values ρ. We write ρ|l (ρ|r) to denote the first
(second) element of a pair ρ. For public values, we have
that ρ|l = ρ|r and write ⟨v⟩, while for secret values ρ|l and
ρ|r may differ. We lift this notation to expressions and the
memory as expected.

b) Execution Path Exploration: We use small-step
symbolic evaluation to analyze the instructions. At every
step, the analysis takes a symbolic state as input and
returns a list of symbolic states that correspond to the
feasible execution paths. We visit the instructions in a
depth-first search fashion and collect all path conditions
pc to check path feasibility using an Satisfiability Modulo
Theories (SMT) solver.

c) Symbolic Stack: The symbolic stack holds sym-
bolic expressions e resulting from stack operations on
symbolic values. Consider the get instructions at lines
16–17 in Listing 2 with the current symbolic memory
µ and empty symbolic stack st. The program loads the
symbolic expressions of lv6 i.e. ⟨2112⟩, and lv1 i.e.
Sub(⟨1⟩, Load(⟨2111⟩, µ)) to the stack st. At line 18, the
analysis of instruction add pops the two symbolic ex-
pressions off the stack st and pushes back the result,
Add(⟨2112⟩, Sub(⟨1⟩, Load(⟨2111⟩, µ))).

d) Memory Operations: When analyzing a memory
operation at index e, as in ⟨load :: es, e :: st, µ, lv, pc⟩
or ⟨store :: es, e1 :: e :: st, µ, lv, pc⟩, the analysis generates
a formula, ϕ = (T (e)||r ̸= T (e)|l) to check that the
index is not secret-dependent. The function T : e →
⟨Exp,Exp⟩ translates the index expression e to a pair
of SMT expressions Exp. If e only depends on public
values, then for all valuations of e, e|r = e|l, thus ϕ is
unsatisfiable and the memory operation is safe. However,
if ϕ is satisfiable, then there are concrete values, such
that the memory addresses for the two executions, e|r
and e|l, are different. This is only possible if expression
e depends on secret values, and, thus, the solution to ϕ
reveals a violation of constant time. In our example in
Listing 2, load operation load8_u at line 19 has as index
the top value of st, Add(⟨2112⟩, Sub(⟨1⟩, Load(⟨2111⟩, µ))).
The policy in Listing 3 specifies Load(⟨2111⟩, µ) as secret,
i.e. Load(⟨2111⟩, µ) = ⟨h1, h

′
1⟩ with h1 ̸= h′

1. Thus, the
generated formula ϕ = (2112+(1−h1)) ̸= (2112+(1−h′

1))
is satisfiable for different values of h1 and h′

1. This means

that there exist the two concrete executions that dif-
fer with regards to the memory index, which violates
constant-time.

e) Control-flow Instructions: Like memory oper-
ations, control-flow instructions require checking that
boolean expression e, as in ⟨br_if 0 ::es, e ::st, µ, lv, pc⟩,
is not secret-dependent. Our analysis generates a formula
to check whether the two paths of the relational state take
different branches. WebAssembly considers value zero as
false and any non-zero value as true, hence the generated
formula is ϕ = (T (e)|r = 0) ∧ (T (e)|l ̸= 0). Formula ϕ is
satisfiable only if there is a valuation of e such that the
two executions follow different execution paths, indicating
a violation of the constant-time policy.
Formula Simplification When RelSE needs to check

the constant-time policy for an expression e, it first passes
e to the simplification step (SS). SS translates the expres-
sion to a pair of SMT expressions, e′ = T (e), using the
theory of bitvectors and arrays (32-bit indexed byte array),
QF_ABV. The transformation includes simplification and
memoization steps to reduce the recalculation overhead.
Finally, based on the type of the query, namely memory
operation or control-flow statement, this step generates
formula ϕ. For our previous example, SS first translates
expression e = Add(⟨2112⟩, Sub(⟨1⟩, Load(⟨2111⟩, µ))) to
two SMT expressions 2112+ (1−h1) and 2112+ (1−h′

1),
which are then simplified to 2113−h1 and 2113−h′

1, hence
the final formula becomes ϕ = (2113− h1) ̸= (2113− h′

1).
To solve the simplified formula, Vivienne invokes an
SMT solver. For simple formulas, however, the resulting ϕ
may already be a concrete boolean, e.g., false, allowing
Vivienne skip a call to the SMT solver.
SMT Solver After the simplification step, Vivienne

invokes an SMT solver for solving the simplified formula,
ϕ. The SMT solver of Vivienne has two modes, one for
small formulas and one for large and complex formulas.
For small formulas, Vivienne uses a solver that provides
bindings to the implementation language of Vivienne
and thus, has a reduced communication cost. However,
for larger formulas, the communication overhead is less
significant compared to the benefit of using a more power-
ful SMT solver. In particular, for larger queries Vivienne
uses a portfolio solver were many solvers take as input the
same formula and the solver that finishes first returns the
result. To decide over which solver mode to use, Vivienne
uses the number of expressions in the formula.
Invariant Generation Vivienne has an optional in-

variant generation step for analyzing loops. When invari-
ant generation is enabled and the analysis visits a loop at
location loc, Vivienne starts a preprocessing step to auto-
matically generate a relational invariant I. The invariant
defines the variables (local variables, global variables, and
memory) that are public, i.e. I = {∀x ∈ Vp ⊆ V. x|l = x|r},
where V is the set of all variables modified in the loop
and Vp is the subset of the modified variables that are
public. To discover whether a variable is public or secret,



the preprocessing step queries the SMT solver about the
security policies of the modified variables, V , after sym-
bolically executing one loop iteration. That is, given a
variable x ∈ V , the preprocessing step generates a query,
ϕ = (x|l ̸= x|r). If the query is unsatisfiable, then the
variable is assumed to be public and x is added to Vp,
otherwise, it is assumed to be secret. In the special case
of x|l = x|r = c ∈ Z, the analysis assumes that x has a
symbolic value c and adds the equality constraint x = c to
the invariant, I. After generating invariant I, the analysis
continues with verifying this invariant. To do that, Vivi-
enne 1) generates fresh symbolic variables (havoc) for all
modified variables x ∈ V , 2) assumes that the invariant,
I, holds, 3) performs RelSE on the loop body with the
havoced values and discovers possible vulnerabilities, 4)
verifies that the invariant holds by asserting I on the new
relational state. If the generated invariant is not a loop
invariant, then the last step will fail. After analyzing
the loop body, the analysis continues outside the loop.
The invariant verification algorithm is a generalization of
standard (functional) invariant checking, hence we expect
the loop analysis to be sound, as supported by the exper-
iments.

Consider the loop at loc = 15 in Listing 2. Local
variables 1 and 4 are modified in the loop body, i.e.
V = {lv1, lv4}. Of these, lv1 stores j (line 24), which
is secret because it depends on rec->data[l-1] and lv4
stores value 1, which is public. Thus, Vp = {lv4}, hence
the invariant is I = {lv4|l = lv4|r}. To analyze the loop,
Vivienne 1) havocs lv1 and lv4, 2) assumes the invariant
I, i.e. that lv4 is initially public, 3) performs RelSE at the
loop body to discover constant-time vulnerabilities, and 4)
asserts the invariant I. Here, the program assigns lv4 only
once in the loop body, at line 22, where, lv4 takes value
one, which is public, and thus, the invariant I holds.
Output Vivienne outputs the discovered constant-

time violations (), if any, as well as the SMT solver-
generated counterexamples that witness these violations.

Vivienne is implemented as an extension of the We-
bAssembly reference interpreter [19] in OCaml, using
OCaml compiler 4.06. Vivienne uses the OCaml interface
of z3 [20] to generate and simplify the constant-time
formulas, and solve queries that have a small number of
expressions. For larger formulas, Vivienne uses a port-
folio solver consisting of four solvers, i.e. Boolector [21],
Yices2 [22], CVC4 [23], and Z3 [20] running in parallel.
Vivienne is publicly available online at https://github.
com/romits800/Vivienne.

IV. Evaluation

We evaluate Vivienne with respect to three research
questions:
RQ1: Can we use RelSE for constant-time anal-

ysis of real-world cryptographic implementations
in WebAssembly? To investigate the effectiveness and

efficiency of RelSE for constant-time analysis on We-
bAssembly programs, we use Vivienne to analyze the
implementations of seven cryptographic libraries within a
time limit of 90 minutes.
RQ2. To what extent do the automatically gen-

erated loop invariants affect the scalability and
precision of RelSE? We evaluate Vivienne’s support
for automatic invariant generation on our benchmarks and
compare it to the results of RQ1.
RQ3. How does Vivienne compare to existing ap-

proaches for constant-time analysis of WebAssem-
bly? We compare Vivienne with CT-wasm [9] with re-
gards to simplicity, permissiveness, and efficiency.

A. Experimental Setup and Overview of Benchmarks
We run the experiments on a machine running Debian

GNU/Linux 10 (buster) on an IntelCore™i9-9920X pro-
cessor 3.50GHz with 64GB of RAM. We used the LLVM-
10 compiler with WASI libc [12] and two optimization
levels (-O0 and -O3) for compiling our C benchmarks to
WebAssembly. Vivienne uses a time limit of 90 minutes
for each benchmark and a threshold of 1500 expressions
to trigger a call to the portfolio solver.
We evaluate Vivienne with seven cryptography li-

braries, including both constant-time and non-constant-
time implementations. Some benchmarks have been used
in prior works [9], [16] to evaluate constant-time policies,
which provides us with common ground for comparison.
We extract the security policies for the first two libraries
from the type annotations of CT-wasm [24] and use the
policies of Binsec/Rel [25] for the other libraries. The full
details of our benchmarks are available at https://github.
com/romits800/Vivienne_eval.
CT-wasm benchmarks (CTw): Three handwritten

WebAssembly benchmarks from CT-wasm [9]. We verify
the encrypt and decrypt functions of Salsa20 and TEA,
and the transform and update functions of SHA256.
TweetNaCl WebAssembly (Tw): WebAssembly im-

plementation of TweetNaCl [8] previously verified by CT-
wasm [9]. We verify core_hsalsa20, core_salsa20, and
crypto_onetimeauth.
WHACL* (WH): A formally verified cryptography

library compiled to WebAssembly [3]. We verify Chacha20,
Curve25519_51, Poly1305_32, Salsa20, and Hash_SHA2
in WHACL* v3.0.0. To our best knowledge, this is the
first time WHACL* is verified.
Libsodium (L0, L3): A cryptography library written

in C [2]. Vivienne verifies the constant-time implemen-
tations of crypto_aead, crypto_auth, crypto_stream,
crypto_onetimeauth, crypto_core, and crypto_hash
for Libsodium v.1.0.18-stable with optimization levels -O0
and -O3.
BearSSL (B0, B3): An implementation of SSL/TLS in

C. We verify the constant-time functions aes_ct_cbcenc
and des_ct_cbcenc and the non constant-time functions
aes_big_cbcenc and des_tab_cbcenc. B0 includes the



Bench. Vivienneunroll Vivienneinv
BS A 3 7 #FS #SS 3 7 #FS #SS
CTw 6 6/6 0/0 4K 0 6/6 0/0 814 412
Tw 3 3/3 0/0 181 0 3/3 0/0 320 164
WH 6 5/6 0/0 126K 0 6/6 0/0 70K 7K
B0 4 2/2 2/2 32K 40 1/2 0/2 10K 873
B3 4 2/2 2/2 2K 40 0/2 1/2 158K 3K
L0 8 8/8 0/0 113K 18 2/8 0/0 21K 347
L3 8 8/8 0/0 9K 18 3/8 0/0 3K 309
A0 8 5/5 3/3 683 31 No loopsA3 8 5/5 3/3 55 9
Lu0 1 0/0 0/1 25K 4K 0/0 1/1 539 217
Lu3 1 0/0 1/1 3K 3K 0/0 0/1 94 63
Sum 57 44/45 11/12 - - 21/35 2/6 - -

TABLE I
Verifying 57 cryptography functions with Vivienne, with

unrolling and with invariant inference. The numbers in red
denote incomplete results.

functions with optimization level -O0 and B3 is optimiza-
tion -O3.
Almeida et al. [10] (A0, A3): Five constant-time and

three non-constant-time implementations of select and
sort. We analyze WebAssembly binaries compiled with
optimization levels -O0 and -O3.
Lucky 13 (Lu0, Lu3): A known timing vulnera-

bility [11] of TLS implementations (see Listing 1). We
analyze function tls1_cbc_remove_padding of OpenSSL
1.0.1 [26] with optimization levels -O0 and -O3.

B. Results
This section discusses the evaluation results for each of

the research questions. Table I presents the aggregated
results of the analysis with Vivienne. The columns un-
der Bench describe the benchmarks, i.e. the abbreviated
library name, BS, and the number of analyzed algorithms,
A. The next two columns present Vivienne’s results with
loop unrolling (Vivienneunroll) and with loop invariant
(Vivienneinv). We report the number of verified constant-
time implementations, 3, the number of vulnerable imple-
mentations 7, the number of formulas subject to simpli-
fication, #FS, and the number of queries that Vivienne
propagates to the SMT solver, #SS. Note that #SS is the
subset of #FS that requires a call to the SMT solver.
We highlight in red the incomplete results. For example,
Vivienne with loop unrolling (Vivienneunroll) was able to
verify successfully five out of six implementations of WH
within the time limit of 90 minutes. Appendix A includes
the full evaluation results for Vivienneunroll, while the
results for Vivienneinv are available as supplementary
material online [27].

1) RQ1: Can we use RelSE for constant-time analy-
sis of real-world cryptographic implementations in We-
bAssembly? : To evaluate the effectiveness of Vivienne
in analyzing cryptographic libraries, we consider the rate
of successfully analyzed algorithms for both secure (3)
and insecure (7) implementations. The summarized re-
sults (Sum) in Table I show that Vivienneunroll analyzes
successfully 44 out of 45 constant-time implementations

and 11 out of 12 non-constant-time implementations for
a total 55/57 implementations. This corresponds to 96%
success rate while reporting no false positive. The two
outliers are Hacl_Curve25519_51_scalarmult of WH and
tls1_cbc_remove_padding of Lu0. The former contains a
loop with 256 iterations, each generating 9108 queries. One
of these queries affects an increasingly large part of the
total execution time for an iteration. The corresponding
formula models the satisfiability of a branch condition that
depends on the stack pointer, which WHACL* stores in
memory. As a result, the formula has to encode the whole
memory, which contributes with 3054 new memory stores
for every iteration, thus increasing the time for the genera-
tion and simplification of the formula. This can be inferred
from the results of Table I, where the total six implementa-
tions of WH generate 126K formulas (#FS), of which 80896
correspond to Hacl_Curve25519_51_scalarmult.
The second outlier is tls1_cbc_remove_padding with

-O0, which contains a loop with non-constant bound, as
reported in line 9 in Listing 1. The lack of a constant bound
forces Vivienneunroll to consider all possible values for
rec->data[l-1], which is an eight-byte value. This leads
to maximum 256 iterations for every path that visits the
loop. We find that the optimization level -O0 includes a
number of stack operations that modify the memory at
every iteration. As we can see in Table I, this leads to
25K #FS and 4K #SS. The former requires on average 0.01
seconds (4 minutes in total) for simplification, whereas the
latter requires 0.87 seconds (58 minutes in total) for SMT
solving.
In summary, our results show that RelSE can be used to

analyze real-world cryptographic implementations, while
the memory operations and loops remain the main bot-
tleneck for the SMT solver. Vivienneinv addresses the
challenge of loops by generating relational loop invariants
automatically. Further discussion about the SMT solver
results of our analysis are available as supplementary
material [27].

2) RQ2. To what extent do the automatically gener-
ated loop invariants affect the scalability and precision of
RelSE?: Our results in Table I show that Vivienneinv
is able to successfully analyze constant-time implemen-
tations for the first three benchmark libraries. It also
analyzes successfully the implementations of WH and Lu0
that Vivienneunroll could not handle. Perhaps surpris-
ingly, Vivienneinv performs poorly on the benchmarks
B0, B3, L0, and L3, analyzing only 29% of the implemen-
tations. The main reason is that the havocing of modified
variables during the invariant generation replaces constant
values with unbounded symbolic values. This triggers a
path explosion whenever a conditional instruction is ana-
lyzed with the new symbolic values. Moreover, it increases
the search space for the solver and the complexity of
queries whenever a symbolic value indexes the memory in
store operations. In Table I, the number of solver queries,
#SS, for Vivienneinv is larger than for Vivienneunroll,



which reflects the increase in the complexity because the
solver queries (#SS) report the formulas that cannot be re-
solved during the simplification stage. For the benchmarks
Tw and B3, the number of queries, #FS, also increases due
to path explosion. By contrast, for the benchmarks that
Vivienneinv analyzes successfully, #FS decreases due to
the reduction of loop iterations by the loop invariant.

In summary, Vivienneinv analyzes successfully 56% of
the implementations, including two implementations for
which Vivienneunroll failed. This shows that Vivienneinv
complements Vivienneunroll for constant-time analysis.

3) RQ3: How does Vivienne compare to existing ap-
proaches for constant-time analysis of WebAssembly?: To
our best knowledge, CT-wasm [9] is the only constant-
time analysis tool for WebAssembly. We consider three
dimensions for comparison: 1) simplicity, 2) permissive-
ness, and 3) efficiency. Simplicity refers to the required
user effort to verifying a target implementation. CT-wasm
relies on type annotations for the program, which can be
partially inferred [9]. By contrast, Vivienne requires only
the security policies and entry-point function, otherwise
no further modifications to the generated WebAssembly
binary are needed. This reduces the user effort for analyz-
ing a program. Permissiveness refers to the ability of the
method to analyze and successfully verify cryptographic
implementations. CT-wasm considers the whole memory
as secret, which rules out any secure programs that
store public values in memory. For example, CT-wasm
required refactoring three functions of the TweetNaCl [8]
library, i.e. poly1305_blocks, poly1305_update, and
poly1305_finish, to make it amenable to verification.
By contrast, Vivienne analyzes and verifies the whole
implementation of (crypto_onetimeauth), with no mod-
ifications to the original code. Moreover, Vivienne could
analyze and verify 57 WebAssembly implementations, in-
cluding the two libraries CTw and Tw which were verified
by CT-wasm [9]. With regards to efficiency, CT-wasm is
clearly superior to Vivienne because it relies on type
checking, while Vivienne performs expensive symbolic
analysis and constraint solving. However, as we have seen
in RQ1, Vivienne was still able to analyze real-world
WebAssembly implementations within a reasonable time
limit.

To summarize, Vivienne verifies a larger number of
cryptographic implementations than CT-wasm with no
need for refactoring and with minimal annotation efforts
at the expense of an efficiency cost.

4) Discussion: Ideally, an accurate analysis should be
implemented as close to the hardware as possible to avoid
vulnerabilities introduced by compiler transformations.
For Vivienne, the structured control flow of WebAssem-
bly facilitates the analysis, while binary-level analyses face
challenges with unstructured control flow and diversity of
architectures [28], [16]. This raises the question of whether
constant-time programs at WebAssembly level preserve
the property at the machine level.

The machine code generated from a WebAssembly bi-
nary relies on the compiler of the respective runtime
system. Unfortunately, a direct analysis of this machine
code with tools like Binsec/Rel [16] is not possible due
to the different calling conventions and implementation
details of Binsec/Rel. A comparison of Vivienne’s results
at the WebAssembly level with Binsec/Rel’s results at the
machine level for the benchmarks L0, L3, B0, B3, A0,
A3, Lu0, and Lu3 in Table I shows that both tools yield
the same result on all benchmarks, except of the select
implementations of the benchmarks of Almeida et al. [10].
The difference is manifested in the compilation of the
select implementations at optimization level -O3, which
Binsec/Rel identifies as insecure. In our experiments,
LLVM-10 with flag -O3 compiles all the C implementations
of select (A3 in Table I) to one WebAssembly select in-
struction. The compilation from WebAssembly to machine
code translates the WebAssembly select instruction ei-
ther to a constant-time conditional assignment (safe), e.g.
cmov for x86, or to a set of instructions that include
a branch instruction (unsafe), depending on the target
machine and the compiler implementation. To account
for these differences, Vivienne provides a command-line
option for treating the WebAssembly select instruction
as unsafe.

V. Conclusion
This paper presented Vivienne, an open-source tool

for analyzing constant-time for WebAssembly programs.
Vivienne relies on RelSE and leverages the structure of
WebAssembly to implement several optimizations, includ-
ing automated invariant generation. We used Vivienne
to analyze successfully 57 cryptographic implementations
with minimal annotation overhead and no code refactor-
ing. Moreover, Vivienne is the first tool to verify constant
time for the WebAssembly implementation of HACL*.

Acknowledgments
We thank anonymous reviewers for their helpful feed-

back. This work is partially supported by the Wallenberg
AI, Autonomous Systems, and Software Program (WASP)
funded by Knut and Alice Wallenberg Foundation, the
TrustFull project funded by the Swedish Foundation for
Strategic Research (SSF), the JointForce project funded
by the Swedish Research Council (VR), and Digital Fu-
tures.

References
[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,

D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing
the web up to speed with WebAssembly,” in Proc. of the Conf.
on Programming Language Design and Implementation (PLDI),
2017, pp. 185–200.

[2] Libsodium Community, “The sodium cryptography library
(Libsodium),” 2018. [Online]. Available: https://libsodium.
gitbook.io/doc

[3] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan,
“Formally Verified Cryptographic Web Applications in We-
bAssembly,” in 2019 IEEE Symposium on Security and Privacy
(SP), May 2019, pp. 1256–1274.



[4] D. Lehmann, J. Kinder, and M. Pradel, “Everything old is new
again: Binary security of WebAssembly,” in 29th USENIX Secu-
rity Symposium (USENIX Security 20). USENIX Association,
Aug. 2020, pp. 217–234.

[5] D. Molnar, M. Piotrowski, D. Schultz, and D. A. Wagner,
“The program counter security model: Automatic detection and
removal of control-flow side channel attacks,” in Information
Security and Cryptology - ICISC 2005, 8th International Con-
ference, Seoul, Korea, December 1-2, 2005, Revised Selected
Papers, 2005, pp. 156–168.

[6] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Veri-
fiable Side-Channel Security of Cryptographic Implementations:
Constant-Time MEE-CBC,” in Fast Software Encryption, ser.
Lecture Notes in Computer Science, T. Peyrin, Ed. Berlin,
Heidelberg: Springer, 2016, pp. 163–184.

[7] T. Pornin, “Bearssl, a smaller SSL/TLS library,” last accessed
May 14, 2021. [Online]. Available: https://bearssl.org/

[8] T. Stüber, “TorstenStueber/TweetNacl-WebAssembly,” Oct.
2019. [Online]. Available: https://github.com/TorstenStueber/
TweetNacl-WebAssembly

[9] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “CT-
wasm: type-driven secure cryptography for the web ecosystem,”
Proceedings of the ACM on Programming Languages, vol. 3,
no. POPL, pp. 77:1–77:29, Jan. 2019. [Online]. Available:
http://doi.org/10.1145/3290390

[10] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir,
and M. Emmi, “Verifying constant-time implementations,”
in 25th USENIX security symposium (USENIX security
16). Austin, TX: USENIX Association, Aug. 2016, pp.
53–70. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/almeida

[11] N. J. Al Fardan and K. G. Paterson, “Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols,” in 2013 IEEE Sympo-
sium on Security and Privacy, May 2013, pp. 526–540, iSSN:
1081-6011.

[12] L. Clark, “Standardizing wasi: A system interface to run we-
bassembly outside the web,” Mozilla Hacks–the Web developer
blog, March, 2019.

[13] C. Watt, A. Rossberg, and J. Pichon-Pharabod, “Weakening
WebAssembly,” Proceedings of the ACM on Programming Lan-
guages, vol. 3, no. OOPSLA, pp. 133:1–133:28, Oct. 2019.

[14] M. Vassena, C. Disselkoen, K. v. Gleissenthall, S. Cauligi,
R. G. Kıcı, R. Jhala, D. Tullsen, and D. Stefan, “Automatically
eliminating speculative leaks from cryptographic code with
blade,” in Proc. Symp. on Principles of Programming Languages
(POPL 2021), 2021. [Online]. Available: http://arxiv.org/abs/
2005.00294

[15] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi,
E. Johnson, Z. Gang, A. Vahldiek-Oberwagner, R. Sahita,
H. Shacham, D. Tullsen, and D. Stefan, “Swivel: Hardening
WebAssembly against Spectre,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug.
2021. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/narayan

[16] L.-A. Daniel, S. Bardin, and T. Rezk, “Binsec/Rel: Efficient
Relational Symbolic Execution for Constant-Time at Binary-
Level,” in 2020 IEEE Symposium on Security and Privacy (SP),
May 2020, pp. 1021–1038, iSSN: 2375-1207.

[17] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and
B. Beurdouche, “HACL*: A Verified Modern Cryptographic
Library,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS
’17. New York, NY, USA: Association for Computing
Machinery, Oct. 2017, pp. 1789–1806. [Online]. Available:
http://doi.org/10.1145/3133956.3134043

[18] G. P. Farina, S. Chong, and M. Gaboardi, “Relational Symbolic
Execution,” in Proceedings of the 21st International Symposium
on Principles and Practice of Declarative Programming, ser.
PPDP ’19. New York, NY, USA: Association for Computing
Machinery, Oct. 2019, pp. 1–14.

[19] W. C. Group, “Webassembly Reference Interpreter,” 2018.
[Online]. Available: https://github.com/WebAssembly/spec/
tree/master/interpreter

[20] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,”
in Tools and Algorithms for the Construction and Analysis
of Systems, ser. Lecture Notes in Computer Science, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer,
2008, pp. 337–340.

[21] R. Brummayer and A. Biere, “Boolector: An Efficient SMT
Solver for Bit-Vectors and Arrays,” in Tools and Algorithms for
the Construction and Analysis of Systems, ser. Lecture Notes
in Computer Science, S. Kowalewski and A. Philippou, Eds.
Berlin, Heidelberg: Springer, 2009, pp. 174–177.

[22] B. Dutertre, “Yices 2.2,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, A. Biere and R. Bloem, Eds.
Cham: Springer International Publishing, 2014, pp. 737–744.

[23] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-
vanović, T. King, A. Reynolds, and C. Tinelli, “CVC4,” in
Computer Aided Verification, ser. Lecture Notes in Computer
Science, G. Gopalakrishnan and S. Qadeer, Eds. Berlin,
Heidelberg: Springer, 2011, pp. 171–177.

[24] “Ct-wasm,” https://github.com/PLSysSec/ct-wasm-ports, ac-
cessed: 2021-06-11.

[25] “Binsec/rel,” https://github.com/binsec/rel_bench, accessed:
2021-06-11.

[26] “Openssl dtls,” https://github.com/openssl/openssl/blob/
OpenSSL_1_0_1/ssl/d1_enc.c, accessed: 2021-06-11.

[27] R. M. Tsoupidi, M. Balliu, and B. Baudry, “Supplementary
Material for Vivienne: Relational Verification of Cryptographic
Implementations in WebAssembly,” https://doi.org/10.5281/
zenodo.5409477, 2021, accessed: 2021-09-02.

[28] M. Balliu, M. Dam, and R. Guanciale, “Automating Information
Flow Analysis of Low Level Code,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. New York, NY, USA: Association
for Computing Machinery, Nov. 2014, pp. 1080–1091. [Online].
Available: https://doi.org/10.1145/2660267.2660322

Appendix A
Evaluation Results

Table IV and Table V show the complete results of the
evaluation for Vivienneunroll and Vivienneinv, respec-
tively. The experiments for the two tables use a time limit
of 90 minutes and the reported time values are in seconds
and consist of the average and standard deviation after
five runs. The first column shows the file name followed by
the function that corresponds to the entry point for the
analysis. Column LoC shows the number of WebAssembly
instructions that the analysis accesses, column AN time is
the analysis time in seconds. When AN time is -1, then
Vivienne was not able to successfully analyze the re-
spective implementations, whereas when AN time is * for
Vivienneinv, then this means that the invariant assertion
failed for one of the loops. Column  shows the number
of discovered timing vulnerabilities. #FS is the number
of formulas during the analysis and next column shows
the time in seconds for the simplification step. #SS is
the number of formulas that Vivienne forwards to the
SMT solver, followed by the average number of expressions
in each formula, #Exprs, and the solving time SS time.
#Exprs is the value that decides selecting the bindings
solver or the portfolio solver. In these experiments, for
#Expr ≤ 1500, Vivienne uses the bindings solver, oth-
erwise the portfolio solver.
For example, the third entry for WHACL* in Ta-

ble V shows the results for the analysis of function



Hacl_Poly1305_32_poly1305_mac from WHACL* mod-
ule poly1305. Vivienne goes through 1440 different We-
bAssembly instructions, not considering the multiple ac-
cesses for loops. The analysis time is 1.55 seconds and
the analysis did not discover any timing vulnerabilities,
generated 700 formulas that took less than 0.01 seconds
to simplify. Of these 700 formulas, 69 where forwarded to
the SMT solver, whereas the rest were simple enough for
the analysis to infer their result. The average number of
expressions in these 69 formulas is 22 expressions and the
solving time was less than 0.01 seconds.

A. Vivienneunroll and Vivienneinv comparison
By comparing Tables IV and V, we notice that the

number of queries, #FS, is, in general, larger for Vivi-
enneunroll than Vivienneinv. The reason for this is that
Vivienneunroll needs to make queries for memory op-
erations and control-flow instructions at every iteration.
However, constant-time cryptographic implementations
typically use constant memory indexes and often branch
on constant values. This means that these queries are
simple and in most cases do not require invoking the SMT
solver (low #SS). On the other hand, Vivienneinv has
lower #FS than Vivienneunroll (in most cases) because
of the use of an invariant simplifies the analysis of loops.
However, Vivienneinv has increased #SS because first
the invariant analysis requires querying the policies of
modified variables in the loop that might not be con-
stant values and second, it replaces constant values in
if statements or memory indexes with symbolic unbound
values that increase search space of the formula. In some
cases, Vivienneinv has larger #FS than Vivienneunroll,
like in br_aes_ct_cbcenc_run of BearSSL -O3, where
#FS=157984 for Vivienneinv and #SS=2793. This is
due to path explosion as a result of the invariant-induced
overapproximation.

To summarize, we can see three types of complexity
sources in our RelSE analysis: 1) the number of loop
iterations, 2) the number of execution paths, and 3) the
formula complexity (depends often on the memory). Vivi-
enneinv reduces 1) but may increases 2) and 3), whereas
Vivienneunroll has higher 1) which may also increase
3), but typically lower 2). Depending on the combined
effects of these three complexity sources, either of the two
methods may perform better.

Appendix B
SMT Solver

Our approach uses an SMT solver with two modes, the
first uses the Z3 OCaml bindings for reduced communica-
tion overhead and the second uses a portfolio solver that
runs four solvers in parallel. The analysis selects which
SMT solver mode to use depending on the number of
expressions in the formula. Table III shows the share of
formulas that Vivienne passes to the bindings and the
portfolio solver. The table shows that for Vivienneinv, the

Solver Vivienneunroll Vivienneinv
Boolector 45.29% 91.94%
Yices 2 54.71% 6.11%
CVC4 0% 0.33%
Z3 0% 1.62%

TABLE II
Portfolio Solver statistics

Solver Vivienneunroll Vivienneinv
Z3 Bindings 6.0% 63.3%
Portfolio Solver 94.0% 36.7%

TABLE III
Solver statistics

analysis passes the majority of the queries (72.3%) to the
Z3 Bindings solver, which means that the queries from
Vivienneinv have relatively low number of expressions, an
indication on the complexity and the size of the query. For
Vivienneunroll, the opposite is true, as the analysis passes
the majority of the queries (90.4%) to the Portfolio
Solver. This means that Vivienneunroll passes to the
solver mostly queries that contain a large number of
expressions, an indication of complexity.
The portfolio solver consists of four solvers, namely

Boolector, Yices 2, CVC4, and Z3, that run in parallel
and the first to finish reports the result to Vivienne.
Table II shows the share of answers from each of the four
solvers to the queries to the portfolio solver. In Table II,
we see that Z3 and CVC4 are not able to answer to a
large number of queries for either Vivienneinv (3.36%
and 0.25%) or Vivienneunroll (0%). For Vivienneunroll,
Yices 2 answers the majority, i.e. 79.88% of the queries
and Boolector answers to 20.12%. For Vivienneinv, the
opposite is true, namely Boolector answers the majority
of the queries, i.e. 86.83%, whereas Yices 2 answers 9.56%
of the queries. The difference in the efficiency of the solvers
for Vivienneinv and Vivienneunroll, depends primarily
on the (default) heuristics that they use, which can be
beneficial for specific queries. Another parameter that
affects the performance of the solvers is the hardware
that these solvers run on (see Section IV-A) because the
speed of the memory and the processor power may affect
the performance of each solver. To summarize, our results
show that Boolector and Yices 2 are the best performing
solvers in the portfolio, but there is no optimal solver for
constant-time analysis of Vivienne.



bench/function LoC AN time  #FS FS time #SS #Exprs SS time
CT-wasm

salsa20/decrypt 515 0.09 ± 0.00 0 602 < 0.01 0
salsa20/encrypt 512 0.10 ± 0.01 0 602 < 0.01 0
sha256/transform 372 0.05 ± 0.01 0 926 < 0.01 0
sha256/update 409 0.18 ± 0.01 0 1312 < 0.01 0
tea/decrypt 80 < 0.01 0 72 < 0.01 0
tea/encrypt 80 0.01 ± 0.00 0 72 < 0.01 0

TweetNaCl
core_hsalsa20/core_hsalsa20 356 < 0.01 0 46 < 0.01 0
core_salsa20/core_salsa20 412 0.01 ± 0.00 0 54 < 0.01 0
poly1305/crypto_onetimeauth 787 0.11 ± 0.00 0 81 < 0.01 0

WHACL*
chacha20/Hacl_Chacha20_chacha20_encrypt 1777 669.91 ± 3.53 0 9665 0.07 ± 2.77 0
curve25519_51/Hacl_Curve25519_51_scalarmult -1 -1 0 80896 0.07 ± 0.26 0
poly1305/Hacl_Poly1305_32_poly1305_mac 1440 1.34 ± 0.01 0 829 < 0.01 0
salsa20/Hacl_Salsa20_salsa20_encrypt 1887 162.86 ± 1.56 0 8596 0.02 ± 0.71 0
sha256/Hacl_Hash_SHA2_hash_256 1147 1323.51 ± 7.13 0 14512 0.09 ± 4.56 0
sha512/Hacl_Hash_SHA2_hash_512 1550 456.20 ± 4.14 0 12287 0.04 ± 1.62 0

BearSSL -O0
aes_big/br_aes_big_cbcenc_run 2089 13.04 ± 0.11 32 1111 < 0.01 32 3711 0.36 ± 0.37
aes_ct/br_aes_ct_cbcenc_run 4857 46.54 ± 0.76 0 4233 0.01 ± 0.13 0
des_ct/br_des_ct_cbcenc_run 3841 1560.52 ± 6.80 0 23463 0.07 ± 1.23 0
des_tab/br_des_tab_cbcenc_run 1920 24.94 ± 0.16 8 3301 0.01 ± 0.05 8 262 < 0.01

BearSSL -O3
aes_big/br_aes_big_cbcenc_run 791 7.89 ± 0.09 32 218 < 0.01 32 3327 0.22 ± 0.22
aes_ct/br_aes_ct_cbcenc_run 1717 1.69 ± 0.01 0 493 < 0.01 0
des_ct/br_des_ct_cbcenc_run 993 6.49 ± 0.03 0 952 0.01 ± 0.19 0
des_tab/br_des_tab_cbcenc_run 581 3.20 ± 0.03 8 381 0.01 ± 0.15 8 262 < 0.01

Libsodium -O0
aead/crypto_aead_chacha20poly1305_encrypt 7720 369.83 ± 1.33 0 11507 0.03 ± 0.48 16 4 0.04 ± 0.00
auth/crypto_auth_hmacsha256 13913 4856.64 ± 27.94 0 47679 0.10 ± 0.52 0
chacha20/crypto_stream_chacha20 3313 228.04 ± 1.61 0 8756 0.03 ± 0.51 2 4 0.04 ± 0.00
poly1305/crypto_onetimeauth_poly1305_donna 3685 20.78 ± 0.09 0 1671 0.01 ± 0.07 0
salsa20/crypto_core_salsa20 1628 11.99 ± 0.04 0 3513 < 0.01 0
sha256/SHA256_Transform 11692 136.11 ± 0.95 0 8299 0.02 ± 0.06 0
sha256/crypto_hash_sha256 13225 536.25 ± 3.84 0 18712 0.03 ± 0.11 0
sha512/crypto_hash_sha512 13351 295.80 ± 3.18 0 12993 0.02 ± 0.08 0

Libsodium -O3
aead/crypto_aead_chacha20poly1305_encrypt 1971 45.06 ± 0.29 0 896 0.05 ± 0.67 16 4 0.04 ± 0.00
auth/crypto_auth_hmacsha256 3256 562.00 ± 4.19 0 4559 0.12 ± 5.32 0
chacha20/crypto_stream_chacha20 956 0.29 ± 0.01 0 253 < 0.01 2 4 0.04 ± 0.00
poly1305/crypto_onetimeauth_poly1305_donna 940 11.20 ± 0.07 0 223 0.05 ± 0.58 0
salsa20/crypto_core_salsa20 483 0.01 ± 0.00 0 52 < 0.01 0
sha256/SHA256_Transform 2171 0.01 ± 0.00 0 479 < 0.01 0
sha256/crypto_hash_sha256 2980 28.06 ± 0.66 0 1643 0.02 ± 0.66 0
sha512/crypto_hash_sha512 2844 6.20 ± 0.06 0 1344 < 0.01 0

Almeida -O0
naive_select/ct_select_u32_naive 49 0.03 ± 0.00 1 9 < 0.01 3 15 < 0.01
select_v1/ct_select_u32_v1 149 < 0.01 0 14 < 0.01 0
select_v2/ct_select_u32_v2 93 < 0.01 0 10 < 0.01 0
select_v3/ct_select_u32_v3 70 < 0.01 0 9 < 0.01 0
select_v4/ct_select_u32_v4 70 < 0.01 0 9 < 0.01 0
sort/sort3 254 0.18 ± 0.00 1 298 < 0.01 14 68 < 0.01
sort_multiplex/sort3_multiplex 276 0.02 ± 0.00 0 89 < 0.01 0
sort_negative/sort3_negative 209 0.16 ± 0.01 1 245 < 0.01 14 68 < 0.01

Almeida -O3
naive_select/ct_select_u32_naive 5 < 0.01 0 0 0
select_v1/ct_select_u32_v1 5 < 0.01 0 0 0
select_v2/ct_select_u32_v2 5 < 0.01 0 0 0
select_v3/ct_select_u32_v3 5 < 0.01 0 0 0
select_v4/ct_select_u32_v4 5 < 0.01 0 0 0
sort/sort3 84 0.07 ± 0.01 3 21 < 0.01 3 229 0.02 ± 0.01
sort_multiplex/sort3_multiplex 74 0.10 ± 0.00 3 17 < 0.01 3 229 0.02 ± 0.02
sort_negative/sort3_negative 74 0.09 ± 0.01 3 17 < 0.01 3 229 0.02 ± 0.02

lucky13 -O0
tls1_cbc_remove_padding_lucky13/tls1_..._lucky13 -1 -1 5 24978 0.01 ± 0.06 4027 35698 0.87 ± 0.60

lucky13 -O3
tls1_cbc_remove_padding_lucky13/tls1_..._lucky13 133 960.17 ± 15.52 5 3144 < 0.01 3106 3080 0.25 ± 1.03

TABLE IV
Evaluation results with Vivienneunroll



bench/function LoC AN time  #FS FS time #SS #Exprs SS time
CT-wasm

salsa20/decrypt 515 38.99 ± 7.31 0 272 < 0.01 160 426 0.23 ± 0.90
salsa20/encrypt 512 57.78 ± 17.51 0 272 < 0.01 160 426 0.35 ± 1.55
sha256/transform 372 1.06 ± 0.03 0 97 < 0.01 36 323 0.02 ± 0.07
sha256/update 409 3.47 ± 0.03 0 123 < 0.01 44 2469 0.06 ± 0.07
tea/decrypt 80 0.17 ± 0.00 0 25 < 0.01 6 99 0.02 ± 0.03
tea/encrypt 80 0.17 ± 0.01 0 25 < 0.01 6 99 0.02 ± 0.03

TweetNaCl
core_hsalsa20/core_hsalsa20 356 17.28 ± 0.18 0 98 < 0.01 66 291 0.25 ± 0.86
core_salsa20/core_salsa20 412 27.11 ± 5.04 0 106 < 0.01 66 291 0.40 ± 1.71
poly1305/crypto_onetimeauth 787 145.44 ± 0.38 0 116 < 0.01 32 221 4.54 ± 4.55

WHACL*
chacha20/Hacl_Chacha20_chacha20_encrypt 1777 101.19 ± 0.88 0 2029 0.01 ± 0.46 100 95241 0.73 ± 2.36
curve25519_51/Hacl_Curve25519_51_scalarmult 44234 2007.77 ± 9.08 0 59780 0.03 ± 0.09 5676 80 0.01 ± 0.04
poly1305/Hacl_Poly1305_32_poly1305_mac 1440 1.55 ± 0.01 0 700 < 0.01 69 22 < 0.01
salsa20/Hacl_Salsa20_salsa20_encrypt 1887 230.22 ± 2.83 0 6449 0.03 ± 1.12 311 75631 0.11 ± 0.38
sha256/Hacl_Hash_SHA2_hash_256 1147 4.67 ± 0.05 0 720 < 0.01 197 257 0.01 ± 0.05
sha512/Hacl_Hash_SHA2_hash_512 1550 6.88 ± 0.07 0 832 < 0.01 211 244 0.01 ± 0.07

BearSSL -O0
aes_big/br_aes_big_cbcenc_run -1 -1 39 766 < 0.01 146 7296 8.15 ± 10.06
aes_ct/br_aes_ct_cbcenc_run 4857 19.51 ± 0.18 0 4337 < 0.01 50 10 < 0.01
des_ct/br_des_ct_cbcenc_run -1 -1 14 3630 < 0.01 337 19742 9.07 ± 8.59
des_tab/br_des_tab_cbcenc_run -1 -1 13 1563 < 0.01 340 12436 6.59 ± 7.45

BearSSL -O3
aes_big/br_aes_big_cbcenc_run 791 45.45 ± 0.42 32 270 < 0.01 70 3684 0.63 ± 0.94
aes_ct/br_aes_ct_cbcenc_run -1 -1 9 157984 0.02 ± 0.73 2793 4189 0.32 ± 0.06
des_ct/br_des_ct_cbcenc_run -1 * * 256 0.03 ± 0.34 129 3291 0.34 ± 0.27
des_tab/br_des_tab_cbcenc_run -1 * * 180 < 0.01 83 7209 0.83 ± 1.75

Libsodium -O0
aead/crypto_aead_chacha20poly1305_encrypt -1 -1 3 5207 0.02 ± 0.28 13 207810 5.11 ± 9.05
auth/crypto_auth_hmacsha256 -1 -1 74 473 0.01 ± 0.02 133 113452 13.01 ± 16.88
chacha20/crypto_stream_chacha20 3313 231.17 ± 3.25 0 8756 0.03 ± 0.51 2 4 0.04 ± 0.00
poly1305/crypto_onetimeauth_poly1305_donna -1 -1 52 1623 0.01 ± 0.08 17 90626 39.19 ± 112.16
salsa20/crypto_core_salsa20 1628 13.58 ± 0.12 0 3513 < 0.01 0
sha256/SHA256_Transform -1 -1 102 410 0.01 ± 0.03 29 100360 9.32 ± 11.75
sha256/crypto_hash_sha256 -1 -1 110 541 0.01 ± 0.03 67 110077 14.73 ± 15.69
sha512/crypto_hash_sha512 -1 -1 6 270 0.01 ± 0.02 86 109908 0.99 ± 0.41

Libsodium -O3
aead/crypto_aead_chacha20poly1305_encrypt -1 * * 376 0.04 ± 0.45 48 330717 6.63 ± 28.03
auth/crypto_auth_hmacsha256 -1 -1 3 669 0.03 ± 0.75 52 107103 1.49 ± 1.77
chacha20/crypto_stream_chacha20 956 0.31 ± 0.01 0 253 < 0.01 2 4 0.05 ± 0.00
poly1305/crypto_onetimeauth_poly1305_donna -1 -1 6 326 0.03 ± 0.17 87 59566 16.92 ± 36.65
salsa20/crypto_core_salsa20 483 15.87 ± 0.06 0 106 < 0.01 66 291 0.23 ± 0.46
sha256/SHA256_Transform 2171 0.01 ± 0.00 0 479 < 0.01 0
sha256/crypto_hash_sha256 -1 -1 0 632 0.04 ± 0.78 34 34559 0.27 ± 0.84
sha512/crypto_hash_sha512 -1 -1 4 68 0.01 ± 0.04 20 90629 0.62 ± 0.41

Almeida -O0
naive_select/ct_select_u32_naive

No loops

select_v1/ct_select_u32_v1
select_v2/ct_select_u32_v2
select_v3/ct_select_u32_v3
select_v4/ct_select_u32_v4
sort/sort3
sort_multiplex/sort3_multiplex
sort_negative/sort3_negative

Almeida -O3
naive_select/ct_select_u32_naive

No loops

select_v1/ct_select_u32_v1
select_v2/ct_select_u32_v2
select_v3/ct_select_u32_v3
select_v4/ct_select_u32_v4
sort/sort3
sort_multiplex/sort3_multiplex
sort_negative/sort3_negative

lucky13 -O0
tls1_cbc_remove_padding_lucky13/tls1_..._lucky13 575 9.83 ± 0.04 5 539 < 0.01 217 701 0.03 ± 0.02

lucky13 -O3
tls1_cbc_remove_padding_lucky13/tls1_..._lucky13 -1 * * 94 < 0.01 63 472 0.03 ± 0.03

TABLE V
Evaluation results with Vivienneinv



Appendix D

Publication 4

133



Securing Optimized Code Against Power Side
Channels

Rodothea Myrsini Tsoupidi
Royal Institute of Technology KTH

Stockholm, Sweden
tsoupidi@kth.se

Roberto Castañeda Lozano
Independent Researcher

Stockholm, Sweden
rcas@acm.org

Elena Troubitsyna
Royal Institute of Technology KTH

Stockholm, Sweden
elenatro@kth.se

Panagiotis Papadimitratos
Royal Institute of Technology KTH

Stockholm, Sweden
papadim@kth.se

Abstract—Side-channel attacks impose a serious threat to
cryptographic algorithms, including widely employed ones, such
as AES and RSA. These attacks take advantage of the algo-
rithm implementation in hardware or software to extract secret
information via side channels. Software masking is a mitigation
approach against power side-channel attacks aiming at hiding
the secret-revealing dependencies from the power footprint of a
vulnerable implementation. However, this type of software miti-
gation often depends on general-purpose compilers, which do not
preserve non-functional properties. Moreover, microarchitectural
features, such as the memory bus and register reuse, may also
leak secret information. These abstractions are not visible at
the high-level implementation of the program. Instead, they are
decided at compile time. To remedy these problems, security
engineers often sacrifice code efficiency by turning off compiler
optimization and/or performing local, post-compilation trans-
formations. This paper proposes Secure by Construction Code
Generation (SecCG), a constraint-based compiler approach that
generates optimized yet protected against power side channels
code. SecCG controls the quality of the mitigated program by
efficiently searching the best possible low-level implementation
according to a processor cost model. In our experiments with
twelve masked cryptographic functions up to 100 lines of code
on Mips32 and ARM Thumb, SecCG speeds up the generated
code from 77% to 6.6 times compared to non-optimized secure
code with an overhead of up to 13% compared to non-secure
optimized code at the expense of a high compilation cost.
For security and compiler researchers, this paper proposes a
formal model to generate power side channel free low-level code.
For software engineers, SecCG provides a practical approach
to optimize performance critical and vulnerable cryptographic
implementations that preserves security properties against power
side channels.

Index Terms—compilation, power side-channel attacks, code
optimization, software masking, constraint programming

I. INTRODUCTION

Cryptographic algorithms, symmetric/shared key or asym-
metric/private key ones, rely on safeguarding the shared secret
key or the private key, respectively. The exposure of these
keys to unintended users compromises the security of these
algorithms. Unfortunately, the software implementation of
cryptographic algorithms may reveal information about their
secret/private keys [1]. In particular, the attacker may observe

what is termed side-channel information, notably observing
the execution time [1] or the power consumption [2, 3], during
the execution of the algorithm to extract information about
the secret keys. These attacks are attractive especially because
usually they do not require expensive equipment. This paper
focuses on Power Side Channel (PSC) attacks.

Software masking is a widely-used approach to mitigate
PSC attacks [4, 5], hiding secret information by splitting
a secret into n randomized shares. The attacker has to re-
trieve all shares in order to acquire the secret value. While
software masking can be an effective mitigation, compiler
code generation may optimize it away. Moreover, Transition-
Based Leakage (TBL) sources, such as register reuse or
memory-access order, are decided at compile time by low-
level compiler transformations [6, 7, 8].

To mitigate these compiler-induced power side-channel
leaks at the binary level there are techniques based on com-
pilation [7, 9, 10] and binary rewriting with hardware emu-
lation [11, 12, 13]. All these approaches mitigate compiler-
generated leakages using local transformations [13, 7, 11].
The methods that depend on hardware emulation are typically
accurate but may introduce significant overhead [11] and are
hardware specific. For example, Rosita [11], an emulation-
based approach, propose a mitigation that introduces an
overhead ranging from 21% to 64% for ARM Cortex M0.
Wang et al. [7] perform their mitigation using a standard
compiler with no high-level optimizations (-O0). This is a
common practice for security research to ensure the absence
of compiler-induced mitigation invalidation [6, 14]. However,
unoptimized code is highly inefficient, and may even introduce
additional leaks due to the heavy use of the program stack, as
discussed in Section II.

Vu et al. present an approach that enables secure opti-
mization of masked code at a higher level [14, 15]. This
approach applies high-level compiler optimizations by disal-
lowing secure-code removal and operand reordering (due to
associativity of some operations) and are able to generate
correctly masked code. However, they do not deal with TBLs.

Currently, the state-of-the-art approaches are unable to gen-



erate code that is both efficient and secure in the face of TBLs
that enable PSC attacks. To address this challenge, this paper
proposes Secure by Construction Code Generation (SecCG),
an optimizing compiler approach that provably preserves secu-
rity properties against PSC. At the middle-end, SecCG handles
code generated using register promotion (promoting program
variables from memory to registers) as a high-level optimiza-
tion. Then, SecCG uses a constraint-based method to generate
code that is secure against PSC attacks. SecCG controls
the quality of the mitigated program by efficiently searching
the best possible low-level implementation according to a
processor cost model [16]. The security model of SecCG
is hardware agnostic and can be extended with additional
architectural constraints. SecCG is suitable for predictable
architectures with no advanced microarchitectural features,
such as caches or speculative execution. In our experiments
with twelve masked implementations on Mips32 and ARM
Thumb, SecCG improves the execution time of the generated
code from 77% to a speedup of 6.6 compared to non-optimized
code at a overhead of up to 13% compared to non-secure
optimized code. This comes at a cost on compilation time
and scalability, where SecCG optimizes successfully programs
up to 100 lines of code. In summary, this paper makes the
following contributions:
• a compiler approach to generate TBL-free, low-overhead

assembly code for high-level software-masked programs;
• a constraint model for optimized and PSC-secure code

generation;
• a proof that the constraint model guarantees the genera-

tion of secure code for a non-trivial leakage model; and
• experimental results on two architectures showing that

the performance overhead of our mitigation is low and
its efficiency benefits are significant, compared to current
approaches.

II. MOTIVATING EXAMPLE

To motivate our approach, let us consider an example of a
first-order masked implementation. First-order masking splits a
secret value k into two shares, (m, mk), where m is a uniformly
distributed random variable sampled at every execution of the
algorithm; mk = m⊕k is also uniformly distributed (⊕ denotes
the exclusive OR operation). Fig. 1 shows a first-order masked
C implementation of exclusive OR, where key is a secret
value (red), mask is a uniformly random variable (brown),
and pub is a non-secret value (green). At line 2, the algorithm
creates the second share, mk, and at line 3, it performs the
exclusive OR operation with the secret-independent value,
pub. At a high-level, the code of Fig. 1 is secure against
power side channels but a binary implementation generated by
a standard, security-unaware compiler may leak information
about key. For example, hardware-register reuse and memory-
bus access order may reveal secret information [7, 11, 6, 8].
These TBLs are a result of transitional effects, i.e., the power
effect of bits switching between one and zero and vice versa.

Fig. 3a shows the ARM Thumb assembly code generated by
the standard compiler LLVM [17] for the C code in Fig. 1. The

first three str instructions store the function arguments that
reside in registers r0-r2 to the stack (lines 3-5). Line 6 loads
(ldr) the value of rand from the stack into register r1. Line
7 performs the first exclusive OR (line 2 in Fig. 1) between
registers r1 and r2 (key) and stores the result in register r1.
Here, there is a transition for register r1 from value mask to
mk, which leaks the secret key (marked code at line 7). Line
8 stores the content of r1 to the stack and the value of the
memory bus that contains the mask at line 6 transitions to
mk. This leads to another leak due to the transitional effect
in the memory bus (marked code at lines 6 and 8). The rest
of the code performs the second exclusive OR (line 10) and
stores the final result on the stack (line 11).

Fig. 3b shows the mitigation produced by the security
backend of SecCG that eliminates leakages that appear in
the LLVM unoptimized code. The mitigation is based on
instruction scheduling and register allocation transformations.
In particular, changing the order of operands at line 7 results
in a transition from sec to mk that leaks the value of mask,
which is not secret (marked code at line 7). Changing the
order of the instructions hides the memory-bus leakage. More
specifically, because there are no data dependencies between
lines 3-6, the ldr instruction that causes the leak in Fig. 3a
may be scheduled earlier (line 4 in Fig. 3b). Then, another
memory instruction that stores the secret value in memory
(line 6 in Fig. 3b) is scheduled just before the store instruction
at line 8. This causes a transition from sec to mk in the
memory bus that leaks the value of mask (marked code at
lines 6 and 8). These transformations are global, considering
possible available memory instructions and register assign-
ments to mitigate transitional leakages in the whole program
and may (as in Fig. 3b) introduce no overhead.

However, unoptimized code leads to poor performance.
In general, compiler optimizations may invalidate high-level
software mitigations [14]. Fortunately, this is not the case
for register promotion (mem2reg in LLVM), a simple high-
level optimization that enables efficient register allocation by
promoting program variables from memory to registers. This
transformation replaces stack operations to register operations
and preserves the operand order. In particular, aggressive op-
timizations (-O1 to -O3 in LLVM) may take advantage of the
associativity property of ⊕ to change the order of the operands,
converting (mask ⊕ sec) ⊕ pub to mask ⊕ (sec ⊕ pub),
which invalidates masking. Equipped with improved high-level
code, the SecCG backend optimizes low-level transformations
and generates optimized code. Fig.s 2a and 2b show the code
of Fig. 1 compiled with register promotion. Fig. 2a leaks
the same secret information as Fig. 3a due to register reuse,
namely the first exclusive OR operation eors, but contains
no memory-bus secret leak. To mitigate the register-reuse leak
at line 2, SecCG changes the order of the arguments and the
result is now stored in register r2.

As we see in Fig. 3a, unoptimized code may introduce
additional leaks due to the heavy use of the program stack.
Instead, SecCG uses register promotion to remove unnecessary
memory accesses that may cause additional leaks. Then,



1 u32 Xor(u32 pub, u32 mask, u32 key) {
2 u32 mk = mask ˆ key;
3 u32 t = pub ˆ mk;
4 return t;
5 }

Fig. 1: Masked exclusive OR implementation in C

1 @ r0: pub, r1: mask, r2: key
2 eors r1, r2
3 eors r0, r1
4 ...

(a) Insecure (LLVM)

2 eors r2, r1
3 eors r0, r2
4 ...

(b) Secure (SecCG)
Fig. 2: Compilation of function Xor applying register
promotion

1 @ r0: pub, r1: mask, r2: key
2 ...
3 str r0, [sp, #16] @ mem: pub
4 str r1, [sp, #12] @ mem: rand
5 str r2, [sp, #8] @ mem: key
6 ldr r1, [sp, #12] @ mem: rand
7 eors r1, r2

@ proc: rand <- rand ˆ key
8 str r1, [sp, #4] @ mem: rand ˆ key
9 ldr r0, [sp, #16] @ mem: pub

10 eors r0, r1
@ proc: pub <- pub ˆ rand ˆ key

11 str r0, [sp]
@ mem: pub ˆ rand ˆ key

12 ...

(a) Insecure (LLVM)

1 @ r0: pub, r1: mask, r2: key
2 ...
3 str r1, [sp, #12] @ mem: rand
4 ldr r1, [sp, #12] @ mem: rand
5 str r0, [sp, #16] @ mem: pub
6 str r2, [sp, #8] @ mem: key
7 eors r2, r1

@ proc: key <- sec ˆ rand
8 str r2, [sp, #4] @ mem: key ˆ rand
9 ldr r0, [sp, #16] @ mem: pub

10 eors r0, r2
@ proc: pub <- pub ˆ key ˆ rand

11 str r0, [sp]
@ mem: pub ˆ rand ˆ key

12 ...

(b) Secure (SecCGwith no register promotion)

Fig. 3: Compilation of function Xor with no optimizations

SecCG’s backend generates low-level optimized code that does
not expose secret information through transitional leakages
and does not introduce significant overhead compared to non-
secure code.

III. THREAT MODEL AND MODELING BACKGROUND

This section describes the Hamming Distance (HD) model
(Section III-A), the threat model (Section III-B), an HD-
based type-inference algorithm (Section III-C), a constraint-
based compiler backend model (Section III-D), and the run-
ning example for the constraint-based compiler backend (Sec-
tion III-E),

A. Hamming-Distance Model

The Hamming Weight (HW) model [18, 2, 19] corresponds
to the number of active bits in a data word. We assume the
following encoding of the binary data, d =

∑N−1
i=0 2idi, where

di is one if the ith bit of an N-bit word is set and zero
otherwise. The HW of this data is the number of bits that are
set: HW (d) =

∑N−1
i=0 di. The HD leakage model assumes

that the observed leakage when flipping the bits of a memory
element from a value d1 to a value d2 is HW (d1 ⊕ d2),
where ⊕ denotes the exclusive OR operation. If one of the
values d1 is a uniform random variable, then d1⊕d2 is also a
uniform random variable and HW (d1⊕d2) has the same mean
and variance as HW (d1) [19]. This means that by masking
(exclusive bitwise OR) a secret value k with a uniform random
variable m, the HD of the new variable has the same mean
and variance as m. In this way, masking hides the information
of k from the power consumption traces.

We assume a program P (IN) = i1; i2; ..., in that takes
as input a set of variables IN and consists of a sequence
of n instructions ij . We assume that the program has a
leakage at every execution step when there is bit flipping in
the hardware registers or the memory bus. We will use the
terms by Papagiannopoulos and Veshchikov [13] and refer to
the hardware-register transition leakage as Register-Overwrite
Transition (ROT) and the memory-bus transition leakage as
Memory-Remnant Effect (MRE). For MRE, we assume that
both read and write operations make use of the same memory
bus and that the source of the leakage is the transitional effect
when writing the data to the memory bus. In our model, the
memory address of the operations does not affect the leakage.

We represent the leakage as a set of observations in the
power trace. To calculate the observed leakage L(P (IN ))
for an instance IN of the input variables, we use the HD
leakage model. We write P = P ′; in to denote a program
P = i1; i2; ...; in−1; in, with a prefix P ′ = i1; i2; ...; in−1 (IN
is omitted for simplicity). Equations 1-4 present a recursive
definition of the leakage model, where for every point in the
execution trace, the attacker observes the HW of any ROT
or MRE transitions. In the formulas, an expression e is e :=
r | v | bop(e1, e2) | uop(e1) | mem(ea), where r is a register,
v is a constant value, bop is a binary operation, uop is a unary
operation, and mem(ea) is a memory load operation that loads
data from address ea. An instruction is i = r ← e | mem(ea, e),
where r ← e denotes that an expression is assigned to register
r, and mem(ea, e) is a store memory operation that stores data
e at memory address ea. To simplify the leakage equations,
we transform the load operation from r ← mem(ea) to a



L(P ′; r ← e2;P
′′; r ← e1) =L(P ′; r ← e2;P

′′) ∪ {HW (e1 ⊕ e2)},@i ∈ P ′′. i = r ← e3 (1)
L(P ′; i1;P

′′;mem(eb, e2)) =L(P ′; i1;P
′′) ∪ {HW (e1 ⊕ e2)}, (i1 = mem(ea, e1)) ∧ @i ∈ P ′′. i = mem(ec, e3) (2)

L(P ′; r ← e) =L(P ′) ∪ {HW (e⊕ rIN )},@i ∈ P ′. i = r ← e3 (3)
L(P ′;mem(ea, e1)) =L(P ′) ∪ {HW (e1)},@i ∈ P ′. i = mem(eb, e3) (4)

sequence mem(ea, vmem(ea)); r ← vmem(ea), where vmem(ea) is
the value in memory at address ea. Equation 1 describes
the leakage when two instructions write the value of their
result to the same register and no other instruction between
them writes to the same register. Note that the first equation
deals also with instructions in the form r1 ← bop(r2, r3),
where bop is a binary operation and r1 = r2. These two-
address instructions are common in ARM Thumb and x86
architectures. Equation 2 describes the memory-bus leakage
of a memory instruction that writes a value to the memory,
given that another memory instructions precedes this memory
instruction. Equation 3 describes the leakage of the first
instruction that writes to register r. In this case, the leakage
is equal to the HD between the new value and the initial
value in register r, rIN . Similarly, Equation 4 describes the
leakage of the first memory operation. Here, we assume that
the initial memory-bus content, mbIN , is a constant value.
For example, after executing the last instruction of program
P = r1 ← v1;mem(va, v2); r1 ← v3;mem(vb, r1), the
leakage is equal to L(P )

Eq.2
== L(r1 ← v1;mem(va, v2); r1 ←

v3) ∪ {HW (v3 ⊕ v2)} Eq.1
== L(r1 ← v1;mem(va, v2)) ∪

{HW (v3⊕v2), HW (v3⊕v1)} Eq.4
== L(r1 ← v1)∪{HW (v3⊕

v2), HW (v3⊕v1), HW (v2)} Eq.3
== {HW (v3⊕v2), HW (v3⊕

v1), HW (v2), HW (v1 ⊕ r1,IN )}, where r1,IN is the initial
value of register r1.

Here, we consider that a program is a straight-line function.
Additional checks at the call site are necessary for ensuring
the absence of leakage during function calls, for example to
make sure that the initial memory-bus value is constant.

B. Threat Model

We assume that the software runs on an non-speculative
hardware architecture. The attacker has access to the software
implementation and the public data but not the secret data. The
goal of the attacker is to extract information about the secret
data by measuring the power consumption of the device that
the code runs on. The attacker may accumulate a number of
traces from multiple runs of the program and perform statis-
tical analysis, such as Differential Power Analysis (DPA) [2].
At every execution, new random values are generated and the
attacker has no knowledge of the values of these variables.
Our goal is to eliminate any statistical dependencies between
the secret data and the measured power traces.

We assume that input variables are Secret, Public,
or Random. Secret variables contain sensitive values
(e.g. cryptographic keys), which the attacker wants to retrieve

information about. Public variables contain values that the
attacker knows or may learn without causing a leakage.
Finally, Random variables follow the uniform distribution in
the domain of the corresponding program variable. We define
the Leakage Equivalence security condition for the generated
programs as follows:

Definition 1 (Leakage Equivalence). Given a program P (IN)
that has a set of secret input variables, INsec ⊆ IN, a set
of random input variables, INrand ⊆ IN, and a set of public
input variables, INpub ⊆ IN. We assume two instances of the
input variables, IN and IN ′. These two instances differ with
regards to the set of secret variables IN sec and IN ′sec , i.e. for
all public variables, ∀v ∈ IN pub and ∀v′ ∈ IN ′pub we have
v = v′. Let r ∈ IN rand and r′ ∈ IN ′rand be sampled from a
uniform random distribution. Let Lp = L(P (IN )) and L′p =
L(P (IN ′)). Then, we say that a program is leakage equivalent
if the distributions of the leakage of the two executions do not
differ, i.e.

∑

l∈Lp

E[l] =
∑

l′∈L′
p

E[l′] ∧
∑

l∈Lp

Var(l) =
∑

l′∈L′
p

Var(l′),

where E[l] and Var(l) are l’s expected value and variance.

C. HD-based Vulnerability Detection

In our approach, we need a technique to identify whether
two values result in a ROT or and MRE leak. There are
different ways to identify whether there is a leak at some part
of the code. One approach is to use symbolic execution [6, 8].
Symbolic execution executes different paths of a program
symbolically and verifies or invalidates specific properties
with the help of Satisfiability Modulo Theory (SMT) solvers.
Symbolic execution is accurate but has scalability issues when
the number of problem variables or program paths increases.
On the other end, type-based approaches [20, 7] are typically
efficient but at the price of accuracy. In particular, Wang et al.
consider a hierarchy of three types based on the properties of
the distribution they follow: uniformly random distribution, se-
cret independent distribution, or finally unknown distribution.
We call these, Random, Public, and Secret, respectively.
The type-inference algorithm assigns a type to each program
variable. To infer the program variable types, Wang et al.
define a logic model and solve it using an SMT solver. The
complexity of this approach is low compared to symbolic ex-
ecution, at the price of lower accuracy. However, the accuracy
is sufficient for loop-free, linearized programs, a format to
which many masked and cryptographic implementations can



be transformed [7]. Because of this, our approach adapts the
aforementioned type-inference analysis, with some accuracy
improvements (see supplementary material [21]).

D. Constraint-based Compiler Backend

A compiler backend performs three main low-level trans-
formations to generate low-level code: instruction selection,
instruction scheduling, and register allocation. A combinatorial
compiler backend [16, 22, 23] uses combinatorial solving
techniques to optimize software using the aforementioned
transformations. Different approaches may implement one
or more low-level transformations. This section focuses on
Constraint Programming (CP) [24] as a combinatorial solving
technique.

1) Constraint Model: The constraint-based compiler back-
end generates a constraint model that captures the program
semantics, the low-level compiler transformations, and the
hardware architecture. This paper focuses on two compiler
transformations, register allocation and instruction scheduling,
that are crucial for our mitigation.

Compilers typically model the code using an unbounded
number of virtual registers until the register allocation stage.
Register allocation assigns each virtual register to a hardware
register, when possible, or a memory slot on the stack (spill),
otherwise. The latter has a negative effect on code efficiency.
Therefore, register allocation transformations attempt to min-
imize this effect, while conforming to constraints, such as the
number or hardware registers and the calling conventions.

Instruction scheduling decides on the order of the instruc-
tions in a program. A valid instruction schedule satisfies
the data dependencies among instructions and the processor
resource constraints.

A constraint-based compiler backend may be modeled as
a Constraint Optimization Problem (COP), P = 〈V,U,C,O〉,
where V is the set of decision variables of the problem, U is
the domain of these variables, C is the set of constraints among
the variables, and O is the objective function. A constraint-
based backend aims at minimizing O, which typically models
the code’s execution time or size.

A program is modeled as a set of basic blocks B, pieces of
code with no branches apart from the exit. Each block contains
a number of optional operations, o ∈ Operations , that may be
active or not. Inso denotes the set of hardware instructions that
implement operation o. Each operation includes a number of
operands p ∈ Operands , each of which may be implemented
by different, equally-valued temporaries, t ∈ Temps . Tempo-
raries are either not live or assigned to a register (hardware
register or the stack).

Fig. 4 shows a simplified version of the constraint-based
compiler backend model for Fig. 1. Temporaries t0, t1,
and t2 contain the input arguments pub, mask, and key,
respectively. Copy operations (o2, o3, o4, o6, o8) en-
able copying program values from one register to another (or
to the stack) and are critical for providing flexibility in register
allocation. For example, o2, allows the copy of the value pub
from t0 to t3. In the final solution, a copy operation may

not be active (shown by the dash in the set of instructions:
[ -, copy]). The two xor operations (o5, o7) take two
operands each, and each of these operands may use different
but equally-valued temporary variables, e.g. t1 and t4.

o1: in [t0 ← pub, t1 ← mask, t2 ← key]
o2: t3 ← [-, copy] t0
o3: t4 ← [-, copy] t1
o4: t5 ← [-, copy] t2
o5: t6 ← xor [t1,t4] [t2,t5]
o6: t7 ← [-, copy] t6
o7: t8 ← xor [t0,t3] [t6,t7]
o8: t9 ← [-, copy] t8
o9: out [t10 ← [t8,t9]]

Fig. 4: Simplified model of the function in Fig. 1

Fig. 5 shows a valid solution to the register allocation of the
constraint model in Fig. 4. All copy operations are deactivated
and t0, t1, and t2 are assigned to registers R0, R1, R2.
Temporary t6 is assigned to R1 and temporary t8 is assigned
to R0. This register assignment is problematic because it
induces a transition in register R1 from the initial value that
holds the mask to the masked value mask ⊕ key, which
leads to a leakage L(R1 ← R1 ⊕ R2;R0 ← R0 ⊕ R1)

Eq.3
==

L(R1← R1⊕R2)∪{HW (pub⊕(pub⊕mask⊕key))} Eq.3
==

{HW (mask ⊕ (mask ⊕ key)), HW (mask ⊕ key)} =
{HW (key), HW (key ⊕ mask)}. The first element of the
leakage reveals information about key.

The model of instruction scheduling assigns issue cycles to
each operation. This assignment imposes an ordering of the
operation and is constrained by the program semantics. For
example, in Fig. 4, scheduling o6 before o5 is not allowed
because o6 depends on o5 but scheduling o4 before o3
is possible. In Fig. 3b, the store instruction at line 6 (that
corresponds to line 5 in Fig. 3a) is scheduled after the load
instruction at line 4 (line 6 in Fig. 3a). This is allowed because
there is no data dependency between these two instructions.

o1: in [t0:R0, t1:R1, t2:R2]
o5: t6:R1 ← xor t1:R1 t2:R2
o7: t8:R0 ← xor t0:R0 t6:R1
o9: out [t10:R0]

Fig. 5: Solution of the model in Fig. 4

The decision variables of the constraint problem are:
• r(t) ∈ Regst, t ∈ Temps denotes the hardware register

or stack slot assigned to temporary t;
• a(o) ∈ [false,true], o ∈ Operations denotes

whether operation o is active or not;
• i(o) ∈ Inso, o ∈ Operations is the instruction that

implements operation o;
• c(o) ∈ [0,maxc], o ∈ Operations is the cycle at

which an operation o is scheduled, bounded by maxc,
a conservative upper bound of the execution time;



• y(p) ∈ Tempsp, p ∈ Operands is the selected temporary
among all possible temporaries for operand p.

In addition to these, l(t) ∈ [false,true], t ∈ Temps
represents whether a temporary is live or not, ls(t) ∈
[0,maxc], t ∈ Temps represents the cycle at which t becomes
live, and le(t) ∈ [0,maxc], t ∈ Temps represents the last
cycle at which t is live. An important constraint of register
allocation is that the register live ranges of a specific hardware
register ri do not overlap:

∀t1, t2 ∈ Temps . l(t1) ∧ l(t2) ∧ r(t1) = r(t2) =⇒
ls(t1) ≥ le(t2) ∨ ls(t2) ≥ le(t1). (5)

Moreover, when a temporary is live, its last live cycle (le)
is strictly greater than its live start (ls):

∀t ∈ Temps . l(t) =⇒ ls(t) < le(t). (6)

2) Objective Function: A typical objective function of a
constraint-based backend minimizes different metrics such as
code size and execution time. These can be captured in a
generic objective function that sums up the weighted cost of
each basic block:

∑

b∈B
weight(b) · cost(b).

The cost of each basic block consists of the cost of the
specific implementation and is a variable, whereas weight is a
constant value that represents the contribution of the specific
basic block to the total cost. This cost model is accurate for
simple hardware architectures. However, in the presence of
advance microarchitectural features, such as complex cache
hierarchy, branch prediction, and/or out-of-order execution, the
cost model is not accurate.

E. Example in a Constraint-based Compiler Backend

Low-level transformations, like register allocation and in-
struction scheduling, affect the security of programs. Fig. 6a
shows the high-level masked implementation of exclusive OR
in C (same as Fig. 1). The code takes three inputs: p (a
Public value), k (a Secret value), and m (a Random
variable). The code computes first the exclusive OR of m and
k and stores it in mk. Then, it computes the exclusive OR of
mk with p and stores it in rs, which the function returns.

Fig. 6b shows a register allocation of function Xor that
leads to a HD vulnerability. Both m and mk are stored in the
same register, hence the content of mk replaces the previous
value m in register R1. According to the leakage model,
the attacker observes the exclusive OR between the initial
and updated value of a hardware register. Using the register
allocation of Fig. 6b, the leakage reveals information about the
secret: HW(mk⊕ m) = HW((m⊕ k)⊕ m) = HW(k). Value k
is a secret value, and thus, a leak occurs (circled in Fig. 6b).

A constraint-based compiler backend is able to generate
all legal register allocations for a program. Fig. 6c shows an
alternative register allocation for function Xor. Here, the result
of mk is written in hardware register R2, giving a HD leakage
HW(mk⊕k) = HW((m⊕k)⊕k) = HW(m). The leakage here

corresponds to the value of m, which is not a sensitive value.
In a similar way, instruction scheduling may be able to remove
leakages as seen in Fig. 3. By changing the schedule of the
instructions, the model is often able to generate a PSC-free
solution with no code quality overhead.

This example shows that low-level transformations can be
responsible for the introduction of HD vulnerabilities and have
thus to be taken into account to provide effective mitigations.

IV. SECCG

This section introduces SecCG, an approach to optimize
code that is secure against PSC attacks. Fig. 7 shows the high-
level view of SecCG. SecCG is a constraint-based optimizing
secure compiler, i.e. it extends a constraint-based compiler
backend with security constraints. It takes two inputs: 1) a
C or C++ program, and 2) a security policy denoting which
variables are Secret, Random, or Public. SecCG enables
register promotion at the compiler middle end because this
optimization preserves the high-level properties of the pro-
gram and, at the same time, creates substantial opportunities
for register allocation. Then, the constraint-based compiler
backend, extended with security constraints, takes as input
the program in a machine-level Intermediate Representation
(IR) and the security policy. Next, SecCG performs a security
analysis (see Section III-C). The results are used to impose
constraints that prevent HD vulnerabilities. Given the secure
model, the approach generates an optimized solution.

Section IV-A presents the security analysis. Section IV-B
presents the secure constraint model that extends the
constraint-based compiler backend. Finally, Section IV-C
presents the solving enhancements of SecCG.

A. Security Analysis

SecCG performs a security analysis to extract the security
types of each program variable and, subsequently, generates
constraints that prohibit insecure low-level implementations.
The security analysis identifies the security type (Random,
Public, or Secret) of each intermediate variable. In the
compiler constraint model, the program variables correspond
to the input arguments, the operands and the result of each
operation. This is equivalent to the temporary variables, i.e. the
virtual registers. Each operand can use a number of alternative
temporary values t ∈ Temps and each temporary value is
assigned to a register (see Section III-D). The type-inference
rules do not handle loops or conditional statements. However,
cryptographic implementations that are free from PSCs are
often linearizable [7].

The security analysis uses a type-inference algorithm based
on Wang et al. [7]. We extend this algorithm with additional
definitions that improve the accuracy of the type inference
(see supplementary material [21]). In particular, we extend
the type-inference algorithm with rules that consider additional
properties of GF(2n), like distributivity between exclusive or
(⊕) and multiplication in GF(2n) (�). At the end of the
analysis, all temporary variables have an inferred type. Fig. 8
shows the inferred security types for each of the temporaries



u32 Xor(u32 p, u32 m,
u32 k) {

u32 mk = m ˆ k;
u32 rs = mk ˆ p;
return rs;

}

R0 R1 R2

p

rs

k

m

mk

R0: p, R1: m,
R2: k

R1 = R1 ⊕ R2
R0 = R0 ⊕ R1

R0 R1 R2

p

rs

k

m
mk

R0: p, R1: m,
R2: k

R2 = R2 ⊕ R1
R0 = R0 ⊕ R2

(a) Exclusive OR in C (b) Vulnerable register assignment (c) Secure register assignment

Fig. 6: The exclusive OR example, illustrating a HD vulnerability and alternative register assignments

SecCG Backend Analysis
factorial.c

Compiler Front-
and Middle-end

(RegProm)

Optimization
Analyses

Security
Analysis

Secure
Optimizer

sec pol.txt

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

source
code IR IR

extended
model

optimized
solution

Security Policy

Fig. 7: High-level view of SecCG

in our running example. Temporaries t0 and t3 are Public
(green), t2 and t5 are Secret (red), and t1, t4 and
t6-t10 are Random (brown).

o1: in [t0:Public, t1:Random, t2:Secret]
o2: t3:Public ← [-, copy] t0
o3: t4:Random ← [-, copy] t1
o4: t5:Secret ← [-, copy] t2
o5: t6:Random ← xor [t1,t4] [t2,t5]
o6: t7:Random ← [-, copy] t6
o7: t8:Random ← xor [t0,t3] [t6,t7]
o8: t9:Random ← [-, copy] t8
o9: out [t10:Random ← [t8,t9]]

Fig. 8: Typed intermediate representation

The type-inference algorithm is conservative. Function
type(t) : Temps → {R,S, P} returns the type assigned to
temporary variable t. This section abbreviates the types as
follows: type R corresponds to Random, S corresponds to
Secret, and P corresponds to Public.

In the following, we define the data that the security analysis
provides to the constraint model, which the latter requires to
impose security constraints. According to the leakage model,
when a hardware register changes from one value to another,
the exclusive OR of the two values is exposed. Rpairs is
the set of temporary variable pairs that when xor:ed together
reveal secret information:

Rpairs = {(t1, t2) | t1, t2 ∈ Temps ∧
type(t1), type(t2) ∈ {R,P} ∧
type(t1 ⊕ t2) = S}. (7)

In the running example (Fig. 8), Rpairs = {(t1,t6),
(t1,t7), (t1,t8), (t1,t9), (t4,t6), (t4,t7), (t4,t8),

(t4,t9), (t6,t7), (t6,t8), (t6,t9), (t7,t8), (t7,t9),
(t8,t9)}. For every pair of temporaries in Rpairs,
a constraint prohibits the contiguous assignment of the
temporaries to the same register (m and mk in Fig. 6b).

Rpairs do not consider secret values. Instead, if the type
of a temporary variable t is Secret, we impose a different
constraint because the secret information will always result
in a leak. In this case, we impose the constraint that another
random variable should precede and follow the definition of
the secret variable to mask the secret information. Spairs is
a set of pairs, each of which consists of a secret temporary
variable t and a set of random temporary variables ts that hide
the secret information, i.e. ∀t′ ∈ ts . type(t′ ⊕ t) = R:

Spairs = {(t, ts) | t ∈ Temps ∧ type(t) = S ∧
ts = {t′ | t′ ∈ Temps ∧ type(t′) = R ∧

type(t′ ⊕ t) = R}}. (8)

In the running example (Fig. 8), Spairs = {(t5, {t4,t6,
t7,t8,t9})}.

Memory operations may also reveal secret information. We
assume the same leakage model (HD model) for the memory
bus as for the register-reuse transitional effects. This means
that the leakage corresponds to the exclusive OR of two
subsequent memory operations. Mmpairs includes the pairs
of memory operations that result in memory-bus transitional
leakage, i.e. pairs of memory operations that when scheduled
subsequently lead to a secret leakage:

Mmpairs = {(o1, o2) | o1, o2 ∈ MemOperations ∧
type(tm(o1)), type(tm(o2)) ∈ {R,P} ∧
type(tm(o1)⊕ tm(o2)) = S}. (9)

Here, tm(o) ∈ Temps is the temporary that corresponds to the
memory data of the operation. In the running example (Fig. 8),



Mmpairs = {(o3,o6), (o3,o8), (o6,o8)}, in case o3, o6,
o8, are memory spills. Note that, for simplicity, Fig. 8 does
not include all copies for memory spilling as we would need
to duplicate the copies for first storing and then loading the
variables.

The same leakage as in the case when a secret value was
written to a register applies here. If a memory operation
stores/loads a secret value to/from the memory, a random
memory operation that is able to hide the secret information
should precede and follow this operation. Mspairs is a set
of pairs, each of which consists of the memory operation that
accesses secret data, o, and a set of memory operations that
access random data and are able to hide the secret information,
i.e. type(tm(o′)⊕ tm(o)) = R:

Mspairs = {(o, os) | o ∈ MemOperations ∧
type(tm(o)) = S ∧
os = {o′ | o′ ∈ MemOperations ∧

type(tm(o′)) = R ∧
type(tm(o′)⊕ tm(o)) = R}}. (10)

In the example (Fig. 8), Mspairs = {(o4, {o3,o6,o8})},
in case o4, o3, o6, and o8 are spilled in memory.

The security analysis provides Rpairs, Spairs, Mmpairs,
and Mspairs to the constraint model, which enables con-
straining code generation to generate secure implementations.

B. Constraint Model

The constraint model takes as input the four sets computed
by the security analysis (Rpairs, Spairs, Mmpairs, and
Mspairs) and uses them to generate appropriate constraints
that prohibit insecure solutions.

Predicate samereg tells whether the two input temporaries
are active (l(t) = 1) and are assigned to the same register.

pred samereg(t1,t2):
l(t1) ∧ l(t2) ∧ (r(t1) = r(t2))

In Fig. 5, samereg(t0,t8) = l(t0) ∧ l(t8) ∧
(r(t0) = r(t8)) = true, samereg(t2,t6) = false
(r(t2) 6= r(t6)), and samereg(t1,t7) = false (t7
is not live).

1) Rpairs Constraints: The following constraint ensures
that a pair of temporaries in Rpairs are either not assigned
to the same register or they are not subsequent (subseq
constraint, defined in Section IV-B5).

forall (t1,t2) in Rpairs:
samereg(t1, t2) =⇒
(¬subseq(t1,t2) ∧ ¬subseq(t2,t1))

In Fig. 5, this constraint is not satisfied for t1 and t6
because samereg(t2,t6) = true and subseq(t2,t6)
= true.

2) Spairs Constraints: The following constraint ensures
that for each pair (ts,trs) ∈ Spairs, if ts is live, one of the
random temporaries tr ∈ trs precedes the secret temporary
ts and another random temporary succeeds ts.

forall (ts,trs) in Spairs:
exists tr in trs:

l(ts) =⇒ (l(tr) ∧ subseq(tr,ts)) ∧
exists tr in trs:

l(ts) =⇒ (l(tr) ∧ subseq(ts,tr))

Fig. 9 shows a solution to the model in Fig. 4, where
both the Rpairs and the Spairs constraints are satisfied. t5
is active but is assigned to the same register as t4, which
precedes t5 and thus eliminates the leakage. Similarly, t6
follows the assignment of t5 and thus hides the secret value.

o1: in [t0:R0, t1:R1, t2:R2]
o3: t4:R3 ← t1:R1
o4: t5:R3 ← t2:R2
o5: t6:R3 ← xor t1:R1 t5:R3
o7: t8:R0 ← xor t0:R0 t6:R3
o9: out [t10:R0]

Fig. 9: Solution of the model in Fig. 4

3) Mmpairs Constraints: The following constraint ensures
that a pair of non-secret memory operations in Mmpairs,
are either not active or not subsequent memory operations
(msubseq constraint). Constraint msubseq (defined in Sec-
tion IV-B5) is similar to subseq but considers consecutive
memory operations instead of temporaries.

forall (o1,o2) in Mmpairs:
a(o1) ∧ a(o2) =⇒

(¬msubseq(o1,o2) ∧ ¬msubseq(o2,o1))

4) Mspairs Constraints: Finally, the following constraint
ensures that for each pair (os,ors) ∈ Mspairs a random
memory operation or ∈ ors precedes the secret-dependent
memory operation os.

forall (os,ors) in Mspairs:
exists or in ors:

a(os) =⇒ (a(or) ∧ msubseq(or,os)) ∧
exists or in ors:

a(os) =⇒ (a(or) ∧ msubseq(or,os))

This constraint works similarly as the equivalent register
constraint, where instead of register operations, we have
memory operations. In our example, we need to have memory
spilling, i.e. store to the stack, and then load from the stack
(only one of the operations is shown in Fig. 9).

5) Modeling subseq: To define the subseq constraint,
we first define an auxiliary predicate is_before and a set of
auxiliary problem variables lk. Predicate is_before(t1,
t2) tells whether t1 is assigned to the same register as t2

and t1’s life range ends (le(t1)) before the beginning of
the life range of t2 (ls(t2)).

pred is_before(t1,t2): same_reg(t2, t1) ∧
(le(t2) ≤ ls(t1))

Variable lk(t) captures the end live cycle of the temporary
that occupied the same register as t (r(t)) right before t



was assigned. If t’ = lk(t), then the values of t and t’
result in a transitional effect that may reveal information to
the attacker.
forall t in Temps: lk(t) = max(

[ite(is_before(t′,t),le(t′),-1)
| forall t′ in Temps])

Then, the definition of the subseq predicate is as follows:

pred subseq(t1,t2):
samereg(t1,t2) ∧ (lk(t2) = le(t1))

Theorem 1 (Subseq Constraint). The subseq constraint is
true only for pairs of temporary variables that are subse-
quently assigned to the same register:
subseq(t1,t2) ⇐⇒ P = P ′; t1 ← e1;P

′′; t2 ← e2;P
′′′ ∧

r(t1) = r(t2) ∧ ∀i ∈ P ′′ . i = t← e =⇒ r(t) 6= r(t1).

Proof. (⇐) Assume P = P ′; t1 ← e1;P
′′; t2 ← e2;P

′′′ ∧
r(t1) = r(t2) ∧ ∀i ∈ P ′′ . i = t = e ∧ r(t) 6= r(t1). We con-
sider all register assignments in P : P = ...; ti ← ei; ...; t1 ←
e2; ...; t2 ← e2; ...; tj ← ej ...; all these assignments are live
because they appear in the final program. For all assignments
tj following t2 (and thus also ti) we have that le(tj) > ls(t2),
which implies that is_before(tj , ti) = false, and thus
all tj contribute with -1 to max in lk(t2). The same applies
for all registers that are assigned to a different register, they
contribute with -1 because is_before(tj , ti) = false.
Then, lk(t2) = max(le(t)|t ∈ {ti1 , ti2 , .., t1}), where all
{ti1 , ti2 , .., t1} are assigned the same register, r(t2). Be-
cause these temporaries are assigned to the same register,
their live ranges do not overlap (Equation 5), i.e. ∀t, t′ ∈
{ti1 , ti2 , .., t1} . ls(t) ≥ le(t′) ∨ ls(t′) ≥ le(t). Because
t1 ← e1 is scheduled last ∀t ∈ {ti1 , ti2 , .., tin , t1} . ls(t1) ≥
le(t). Also, from Equation 6, le(t1) > ls(t1). This implies
that ∀t ∈ {ti1 , ti2 , .., tin} . le(t1) > le(t), so we have
lk(t2) = le(t1) and ∀t ∈ {ti1 , ti2 , .., tin} . lk(t2) > le(t).
Therefore only for t1, subseq(t1, t2) = true.

(⇒) Assume subseq(t1, t2). This implies that
samereg(t1, t2) ∧ lk(t2) = le(t1). Constraint
samereg(t1, t2) implies that r(t1) = r(t2) and l(t1) ∧ l(t2),
which means that they appear in the final code, P , and are
assigned to the same register. Because lk(t2) = le(t1), t1 is
scheduled before t2 or P = P ′; t1 ← e1;P

′′; t2 ← e2;P
′′′.

Now, we only need to prove that there is no other assignment
of r(t1) in P ′′, i.e. ∀i ∈ P ′′ . t ← e ∧ r(t) 6= r(t1).
If ∃i ∈ P ′′ . t ← e ∧ r(t) = r(t1), then, because live
ranges do not overlap, le(t) > le(t1), which means that
lk(t2) = le(t), 6= le(t1), which is invalid.

For the definition of msubseq, we define an auxiliary
predicate is_before_mem and auxiliary problem variables
ok. Predicate is_before_mem(o1, o2) tells whether o1

is scheduled before o2.

pred is_before_mem(o1,o2):
a(o1) ∧ (c(o1) ≤ c(o2))

In Fig. 9, is_before_mem(o4, o3) is true.
Variable ok(o) captures the issue cycle of memory oper-

ation o′ ∈ MemOperations that was issued before o.

forall o in MemOperations: ok(o) = max(
[ite(is_before_mem(o′, o), c(o′), -1)

| forall o′ in MemOperations])

Similar to predicate subseq, msubseq is as follows:

pred msubseq(o1,o2):
a(o1) ∧ a(o2) ∧ ok(o2) = c(o1)

Theorem 2 (Msubsec Constraint). The msubseq constraint is
true only for two instructions that are subsequently accessing
the memory: msubseq(o1,o2) ⇐⇒ P = P ′; o1;P ′′; o2;P ′′′

∧ @o ∈ P ′′ . o = mem(e′′, e3), where o1 and o2 are memory
operations, o1 = mem(e, e1) and o2 = mem(e′, e2).

Proof. Similar to Theorem 1.

Theorem 3 shows that SecCG generates secure code for our
threat model.

Theorem 3 (Secure Modeling). A program P, generated by
SecCG, satisfies the leakage equivalence condition in Defini-
tion 1. This means that given two input instances IN , IN ′ that
differ only with regards to the secret variables, IN sec ⊆ IN ,
IN ′sec ⊆ IN ′, the distributions of the leakages do not differ.

Proof. We assume that the type-inference algorithm overap-
proximates the actual distribution of each variable. Then, we
perform structural induction on the program P to prove that
security constraints we introduce lead to secure programs. The
proof is available as supplementary material [21].

C. Solving Enhancements

Large problems in combinatorial solving can quickly be-
come difficult to handle due to state-space explosion. A solu-
tion to this problem is structural decomposition of the problem
into subproblems. In code generation, a natural structural
decomposition scheme consists of splitting the problem into
basic blocks [16]. However, SecCG’s security analysis [7]
requires linearized code that corresponds to one large basic
block. There are already approaches on splitting large code
blocks into smaller artificial code blocks for improving the
scalability of the solver [16]. Typically, in decomposition
schemes, the solver first solves each partial solution (basic
blocks) and then composes a full solution consisting of the
partial solutions. However, this solution becomes challenging
with the addition of security constraints that relate different
parts of the code, introducing new inter-block dependencies.
These dependencies may lead to conflicts between the partial
solutions resulting in the rejection of the full solution. To deal
with this problem, SecCG propagates only part of the partial
solutions, leaving some parts of the full solution unsolved. In
particular, SecCG does not propagate the register assignments
to temporaries that correspond to earliest and latest assigned
hardware registers in each basic block, as well as their



corresponding issue cycles. Subsequently, SecCG solves the
unsolved parts as part of the full problem.

The second main enhancement to the solving procedure
concerns the final step of the solving process. In SecCG we
make use of Large Neighborhood Search (LNS) [25], a form
of local search for constraint programming. In particular, at the
end of the decomposition phase, SecCG uses the best found
solution to perform local search and locate better solutions.

V. EVALUATION

For the evaluation of SecCG, we pose the following research
questions:

RQ1: What is the overhead in execution time for the
generated code using SecCG? Here, we want to evaluate
the introduced overhead of secure solutions compared to
optimized but insecure solutions. To do that, we compare the
best known solution [16] with our approach SecCG.

RQ2: What is the improvement in execution time of the
generated code over non-optimized code and other TBL-secure
approaches? Here, we compare our results with LLVM-3.8
with no optimization (-O0) and the work by Wang et al. [7].

RQ3: What is the overhead in compilation time using
SecCG? Here, we want to evaluate the introduced compilation
overhead of secure solutions compared to insecure solutions.
To do that, we compare the compilation time for retrieving the
best known solution [16] with SecCG’s compilation time.

A. Preliminaries

The following sections describe the implementation details
and the experimental setup of the evaluation of SecCG. The
implementation of SecCG and the experiments and bench-
marks for the evaluation are available at https://github.com/
romits800/seccon experiments.git.

1) Implementation Details: SecCG is implemented as an
extension of Unison [16], a constraint-based compiler backend
that uses CP to optimize software functions with regards to
code size and execution time. In particular, Unison combines
two low-level optimizations, instructions scheduling and regis-
ter allocation, and achieves optimizing medium-size functions
with improvement compared to LLVM. Unison uses two
global constraints for modeling the backend transformations;
1) the geometric packing constraint for register allocation and
2) the cumulative constraint for instruction scheduling. The
type-inference implementation is written in Haskell and is
based on Wang et al. [7] with precision improvements (see
supplementary material [21]).

2) Experimental Setup: All experiments run on an
Intel®Core™i9-9920X processor at 3.50GHz with 64GB of
RAM running Debian GNU/Linux 10 (buster). We use LLVM-
3.8 as the front-end compiler for these experiments. To
preserve the high-level security properties of the compiled
programs, we apply only one optimization, register promo-
tion, (-mem2reg in LLVM), which lifts program variables
from the stack to registers. We evaluate our method on two
architectures: ARM Thumb, targeting processor ARM Cortex

M0, a highly predictable processor targeting small embedded
devices; and Mips32, a widely-used embedded architecture.

We implemented the constraint model both as part of the
specialized Gecode [26] constraint model and the Miniz-
inc [27] model that Unison provides. The Minizinc model
allows for solving the problem using multiple solvers. In total,
we tried four solvers, Chuffed v0.10.3 [28], OR-Tools [29],
Elsie Geas1, and the specialized model written in Gecode
v6.2. We ran the former three solvers activating the free-
search option. For the specialized model in Gecode, apart
from the security model, SecCG includes the modified search
enhancements that we describe in Section IV-C. Among all
these solvers, Gecode and Chuffed performed best. None of
them was able to solve all the problems but together they could
solve most of the problems. In the smaller benchmarks, P0-
P6, we run a portfolio solver including Gecode and Chuffed.
For the larger benchmarks, we run every solver separately for
reducing the risk of out-of-memory errors when running both
solvers in parallel. The presented results are the result of five
runs for SecCG and Unison, whereas for the calculation of the
execution time for LLVM -O0, we run the compilation 1000
times to account for possible fluctuations in the compilation
time on the evaluation machine.

3) Benchmarks: To evaluate our approach, we use a set of
small benchmark programs, up to 100 lines of C code and
one program exceeding 900 lines of C code. Table I provides
a description of these benchmarks, including the number of
lines of code (LoC), and the program variables, i.e. the input
variables (IN ) and the number of secret (IN sec), public
(IN pub), and random (IN rand) input variables. Benchmarks
P1 to P6 and P8 to P11 were made available by Wang
et al.2 [7], whereas P0 and P7 are implemented by the
authors of this paper. These benchmark programs constitute
different masked implementations from previous work and are
linearized. Wang et al. [7] use a larger number of benchmarks
to evaluate their approach. However, our approach depends
on a combinatorial optimizing compiler, Unison, which scales
to up to medium size functions, namely, up to approximately
200 intermediate instructions for ARM Cortex M0 and Mips32
architectures [16]. In addition to this, SecCG adds additional
constraints that increase the complexity of the model (see
Section V-D). Therefore, we selected the smallest benchmarks
for our experiments. As a future work, we plan to investigate
non-linearized implementations, but this comes at the expense
of analysis precision and potentially increased performance
overhead.

B. RQ1: Optimality Overhead

SecCG builds on a constraint-based compiler backend to
generate a program that satisfies security constraints for soft-
ware masking. This means that our approach might compro-
mise some of the code quality of the non-mitigated optimized
code to mitigate the software masking leaks. To evaluate

1Elsie Geas: https://bitbucket.org/gkgange/geas/src/master/
2FSE19 tool: https://github.com/bobowang2333/FSE19



TABLE I: Benchmark Description

Prg Description LoC Input Variables (IN)
pub sec rand

P0 Xor (Listing 1) 5 1 1 1
P1 AES Shift Rows [6] 11 0 2 2
P2 Messerges Boolean [6] 12 0 1 2
P3 Goubin Boolean [6] 12 0 1 2
P4 SecMultOpt wires 1 [4] 25 1 1 3
P5 SecMult wires 1 [4] 25 1 1 3
P6 SecMultLinear wires 1 [4] 32 1 1 3
P7 Whitening [6] 58 16 16 16
P8 CPRR13-lut wires 1 [5] 81 1 1 7
P9 CPRR13-OptLUT wires 1 [5] 84 1 1 7
P10 CPRR13-1 wires 1 [5] 104 1 1 7
P11 KS transitions 1 [30] 964 1 16 32

the overhead of our method compared to non-secure opti-
mization, we compare the execution time of the optimized
solution (optimal or suboptimal solution) that Unison [16]
generates compared with SecCG’s optimized and TBL-secure
code. The overhead is computed as (cycles(SecCG) −
cycles(Unison))/cycles(Unison).

Table II shows the mean execution time for each of the
benchmark programs and architectures. In particular, for each
of the architectures, we compare the execution time in number
of cycles of the solution that Unison produces against SecCG’s
solution. The final column shows the overhead of SecCG
compared to Unison.

The results show zero overhead for Mips32, and a maximum
13% overhead in ARM Cortex M0. The zero overhead for
most of the benchmarks shows that the Pareto front of optimal
solutions synthesized by Unison includes code variants that are
secure. This result is in agreement with previous work [31],
which shows the existence of multiple optimal (or best found)
solutions. For ARM Cortex M0, programs P1, P7, and P9 have
a non-zero positive overhead. The observed overhead in ARM
Cortex M0 is due to three main reasons: 1) the mitigation
itself that may require the introduction of redundant operations
in the generated code, 2) the scalability issue that appears in
larger functions due to the addition of new security constraints
in the order of |Temps|2, and 3) the decomposition mode
that may fail to compose solutions (Section IV-C). Program
P10 shows a slight improvement. This improvement is due
to the introduction of LNS at the end of the solving stage
(see Section IV-C), which is not present in Unison. The last
benchmark program, P11, demonstrates the scalability limits
of our approach. The operating system terminates the solving
process because the process attempts to allocate more than the
available memory (out-of-memory error).

To summarize, SecCG does not introduce significant over-
head over the non-secure optimized solution that Unison
generates. This means that in most cases, there is space for
generating secure code without affecting the quality of the
generated code.

C. RQ2: Execution-Time Improvement

To evaluate the execution-time speedup of our approach, we
compare SecCG with the code generated by LLVM without

TABLE II: Optimal solution by Unison and SecCG (SCG) in
cycles; Oh stands for overhead; OM stands for out of memory

Prg ARM Cortex M0 Mips32
[16] SCG Oh (%) [16] SCG Oh (%)

P0 6 6 0 3 3 0
P1 8 9 13 5 5 0
P2 10 10 0 7 7 0
P3 13 13 0 9 9 0
P4 28 28 0 75 75 0
P5 28 28 0 75 75 0
P6 30 30 0 73 73 0
P7 125 128 2 184 184 0
P8 85 85 0 151 151 0
P9 79 82 4 151 151 0
P10 85 81 -5 281 281 0
P11 2635 OM - 1335 OM -

optimizations (-O0). We also compare SecCG with the work
by Wang et al. [7]. Wang et al. identify and mitigate ROT
leaks on non-optimized code from LLVM 3.6. This is a
common approach by different security mitigations, because
compilation passes may violate the security properties of a
program. During their mitigation, Wang et al. may remove
unused code [7], which reduces the overhead.

We compare SecCG with the approach by Wang et al. [7]
for three main reasons, 1) their tool is available freely, 2)
they propose an architecture-agnostic approach that applies
to both Mips32 and ARM Thumb, and 3) they mitigate
transitional effect caused by register reuse, a subset of our
mitigation. Table III compares the execution time in number
of cycles (based on a LLVM-derived cost model) of LLVM,
the mitigated code by Wang et al. [7] and SecCG, for each
of the programs and architectures. Speedup is computed as
cycles(SecCG)/cycles(LLVMO0 ).

For ARM Cortex M0, the speedup ranges from 2.9 for
P5 to 6.3 for P2 and a geometric mean of 3.9 speedup. We
notice that for all benchmarks, SecCG achieves significant
improvement over the baseline. The main reason for this, is
that the increased size of the program under analysis reduces
the ability of the solver to find optimal solutions.

For Mips32, the improvement ranges from 77% to 6.6
speedup and a geometric mean of 3.15 speedup. The im-
provement is larger for smaller benchmarks due to the large
overhead of load and store instructions that are present in
the absence of optimizations in the baseline. In contrast to the
non-optimized code, the code generated by SecCG reduces
memory spilling. In particular, the generic cost model for
Mips32 that we use (derived from LLVM) has an one cycle
overhead compared to linear instructions. For larger programs,
P4-P10, the speedup is smaller but still significant.

This experiment shows that for both architectures SecCG
achieves improvement ranging from 77% up to a speedup
of 6.6 with geometric-mean speedups 3.9 and 3.15 for ARM
Cortex M0 and Mips32, respectively. Although not completely
comparable with SecCG because of the use of different bench-
marks and mitigations, Vu et al. show an improvement over
non-optimized code (-O0) that ranges from 20% to a speedup
of 12.6, with a geometric mean of 2.8 [15]. Compared to the



approach by Wang et al., the speedup that SecCG achieves
ranges from 1.95 (24%) to 7.6 for ARM Cortex M0 and from
1.36 (36%) to 7.7 for Mips32. The geometric-mean speedups
are 3.52 for ARM Cortex M0 and 2.9 for Mips32.

To summarize, for both Mips32 and ARM Cortex M0,
SecCG improves the non-optimized LLVM code. We notice
large improvements for both Mips32 and ARM Cortex M0
ranging from 77% to 6.6 speedup. SecCG generates also
improved code compared to the work by Wang et al. [7].

TABLE III: Execution-time comparison between the non-
optimized baseline and SecCG (SCG); Su is the speedup of
SecCG with LLVM with -O0 as baseline; OM stands for out
of memory

Prg ARM Cortex M0 Mips32
O0 [7] SCG Su O0 [7] SCG Su

P0 20 22 6 3.33 19 23 3 6.33
P1 39 32 9 4.33 33 21 5 6.60
P2 63 76 10 6.30 43 43 7 6.14
P3 52 56 13 4.00 47 47 9 5.22
P4 87 96 28 3.11 139 139 75 1.85
P5 81 90 28 2.89 133 133 75 1.77
P6 112 69 30 3.73 189 188 73 2.59
P7 609 786 128 4.76 382 430 184 2.08
P8 293 166 85 3.45 371 253 151 2.46
P9 301 303 82 3.67 371 371 151 2.46
P10 333 176 81 4.11 593 383 281 2.11
P11 4504 6742 OM - 3688 3237 OM -

D. RQ3: Compilation Overhead

To evaluate the compilation overhead of our approach, we
compare SecCG with Unison [16] and non-optimized LLVM.
The main reason for the compilation overhead of SecCG
compared to LLVM is the combinatorial nature of the backend
compiler. Compared to Unison, SecCG introduces compilation
overhead due to the security constraints among temporaries
and operations in the combinatorial model. In particular, the
subseq constraint introduces a large number of constraints
and variables that are in the order of |Temp|2. The constraints
between memory operations (msubseq) are typically fewer
because memory operations are a subset of all operations. In
general, the actual overhead depends on the program logic and
the security policy. The compilation slowdown is computed as
comp time(SecCG)/comp time(Unison).

Table IV compares the compilation time of SecCG, Unison,
and LLVM -O0. The last column for each architecture in
Table IV presents the slowdown of SecCG compared to
Unison. In Mips32, we can see an increasing overhead in
the compilation time of SecCG compared to Unison with the
increase of the function size. The largest compilation overhead
is for P10 and corresponds to 57.4 slowdown compared
to Unison. The compilation time for non-optimized LLVM
ranges from 0.01 to 0.04 seconds. Comparing SecCG with
LLVM, the slowdown ranges from 300 for P0 to 300K for
P10 (the slowdown does not appear in Table IV)

In the case of ARM Cortex M0, we observe a similar trend.
We observe the largest slowdown for P9 which corresponds
to 27.9 slowdown. However, the compilation time increases

faster than for Mips32. Compared with LLVM, SecCG results
in a slowdown that ranges from 29 for P0 to 400K for P9
(does not appear in Table IV). The main reasons for the
observable difference between the two architectures are 1)
the ARM Thumb architecture is more constrained3 and 2)
interestingly, most instances for Mips32 are solved quickly
by Chuffed, whereas most instances for ARM Cortex M0 are
only solved by Gecode.

To summarize, the compilation time for SecCG is multiple
times slower than Unison because of the introduction of
security constraints. In addition to this, SecCG is slower than
LLVM. Therefore, we believe that SecCG is mostly suitable
for compiling small cryptographic kernels that are both critical
for the performance and the PSC security, such as secure field
multiplication for AES [4].

TABLE IV: Compilation overhead for SecCG (SCG) com-
pared to Baseline (Unison) in seconds; Sd stands for slowdown
of SecCG compared to Unison [16]; OM stands for “out of
memory”

Prg ARM Cortex M0 Mips32
O0 [16] SCG Sd O0 [16] SCG Sd

P0 0.01 0.17 0.29 1.7 0.01 0.43 2.9 6.6
P1 0.01 0.23 3.4 14.7 0.01 0.52 5.1 9.9
P2 0.01 0.32 1.2 3.7 0.01 0.69 6.5 9.5
P3 0.01 7.7 22.9 3.0 0.01 0.84 8.9 10.6
P4 0.01 1K 1K 1.0 0.01 1.2 16.0 13.5
P5 0.01 1K 1K 1.0 0.01 1.2 16.0 13.7
P6 0.01 1K 1K 1.0 0.01 1.3 18.6 14.3
P7 0.02 1.0K 4K 4.7 0.02 6.3 0.1K 17.2
P8 0.01 0.1K 3K 19.4 0.01 35.0 1K 31.3
P9 0.01 0.1K 4K 27.9 0.01 37.0 1K 27.6
P10 0.02 0.4K 7K 18.0 0.01 47.8 3K 57.4
P11 0.04 5K OM - 0.04 52K OM -

E. Threat to Validity

Our model considers the HD leakage model and generates
code that mitigates these leakages. The security guaranties for
our model depend on the HD leakage model. The HD model
has been used both for designing defenses [7] and attacks [19].
However, the HD model does not express precisely the actual
leakage model for some devices [32]. Moreover, an HD-based
mitigation at the assembly level may not hold in the presence
of advance microarchitectural features, such as out-of-order
execution and write buffers. In addition to this, SecCG does
not handle transitional effects through value interaction in the
pipeline stage registers and in the memory. We leave further
improvement of the hardware model as a future work.

SecCG is not a verified compiler approach like Com-
pCert [33]. Unison, the constraint-based backend that SecCG
depends on is based on a formal model that implements
standard optimizations but the external solvers and the tool
implementation are not verified. Verification of constraint
solvers is an active research topic [34].

3ARM Cortex M0 has fewer general-purpose registers than MIPS32 and
includes two-address instructions, which restrict register allocation.



VI. RELATED WORK

The following sections discuss the related work, with re-
gards to mitigations against side-channel attacks, mitigations
against TBLs, and combinatorial compilation approaches.
Athanasiou et al. consider two types of PSC leakage sources,
Value-Based Leakage (VBL) and Transition-Based Leakage
(TBL). VBL occur due to the absence or compiler-induced
removal of masking. For example, a compiler transformation
may convert a masked expression pub ⊕ (mask ⊕ key) to
mask ⊕ (pub ⊕ key), which preserves the code semantics
but breaks the masking mitigation. On the other end, TBL is a
result of low-level microarchitectural features such as register
reuse, memory overwrite, or interactions between values in
the hardware. In the following, we will use these two terms
to describe different mitigations.

TABLE V: Mitigation approaches against side-channel at-
tacks; SCG stands of SecCG, FE, ME, BE stands for front
end, middle end, and back end, respectively; ASM stands for
assembly

Pub. Mitigation Transf. InL OutL ML Avail.
[36] VBL FE, ME DSL - Custom

[37] TSC, MS,
RS - DSL ASM Custom

[38] TSC, MS - DSL ASM Custom
[39] TSC, MS - DSL C Flow

[40] TSC ME DSL C Custom
[13] TBL BE AVR AVR Binary
[41] IFL BE C ASM CompCert ?

[7] TBL BE C, C++ ASM LLVM
[35] TBL - ARM ARM Binary

[15] VBL,
TSC, FI ALL C, C++ ASM LLVM

[11] TBL - ARM ARM Binary
SCG TBL ME, BE C, C++ ASM LLVM

Side-Channel Compiler Mitigation Approaches: General
purpose optimizing compilers perform transformations that
may invalidate high-level security mitigations or introduce
security flaws [42]. Table V presents a non-exhaustive list of
related work that present compiler-based or binary-rewriting
approaches against side-channel attacks. For each publication
(Publication), Table V, shows the mitigations of each approach
(Mitigation), the compiler level that each approach perform
the mitigation (Transformation), the input language (InL), the
output language (OutL), the Mitigation Level (ML) of each
approach that is either a compiler or binary. The last column
(Avail.) denotes with that the artifact is not available, with

that the artifact is available, with that part of the artifact
is available, and finally, with ? where it is not clear whether
the artifact is available or not.

Multiple approaches present compiler-based mitigations
against Timing Side Channels (TSCs) [37, 38, 39, 40, 15],
proof of Memory Safety (MS) [37, 38, 39], or Residual
Program State (RS) [37]. Besson et al. present the notion
of Information-Flow Leakage (IFL) in compiler optimizations
that guarantees that the compiler does not introduce new vul-
nerabilities [41]. They evaluate their approach on two passes

of CompCert, dead-store elimination and register allocation,
using a threat model that considers observation points at
function boundaries. In contrast, the SecCG backend gener-
ates a program secure against ROT and MRE leaks at each
execution point. In addition to this, SecCG does not guarantee
the preservation of the property but rather the absence of
TBLs. If that is not possible, the model is unsatisfiable and
SecCG fails to generate a program. The latter outcome has not
appeared in our experiments4 but there is no guarantee that it
will not happen. For remedying this problem, one may try
to activate a pass in SecCG that introduces additional copies
of masked values, deactivate some high-level optimizations,
and/or deactivate the ROT or MRE constraints.

A recent approach [14, 15] generates high-quality code that
deals with VBLs, Fault Injection (FI), and TSC attacks. To
achieve this, Vu et al. [14] introduce the concept of opaque
observations that disallows the compiler to remove security
mitigations or rearrange operands in instructions, such as
masking instructions. In their later work [15], they improve
the performance of their optimizing compiler by reducing the
requirement for serialization. To achieve this, they require
source-code annotation that may be challenging for non-trivial
programs [15]. Eldib and Wang [36] propose a high-level
program synthesis approach to automatically generate masked
implementations free from VBLs. Both approaches generate
code that mitigates VBLs and thus, do not protect against
TBLs.

TABLE VI: TBL-aware approaches

Pub. Mitigation Target Processor
[13] ROT, MOT, MRE, RNL AVR ATMega163
[7] ROT * *

[35] ROT ARM ARM Cortex-M3
[11] ROT, MOT, MRE, IPI, OT ARM ARM Cortex-M0
SecCG ROT, MRE * *

Code Hardening Against Transition-Based Leakages: There
is a number of approaches that deal with different types
of TBL-related PSCs [13, 7, 35, 11]. Table VI shows the
mitigation approaches against TBLs. For each of the related
works, Table VI, presents the leakage types each of them
mitigates (Mitigation), the target architecture (Target), and the
target processor (Processor). In the last two columns * denotes
that these approaches may target multiple architectures and
processors.

Papagiannopoulos and Veshchikov [13] perform experi-
ments to identify possible sources of leakage in binary AVR
code on a ATMega163. They identify sources of leakage
including ROT, Memory-Overwrite Transition (MOT), which
occurs when overwriting a value in memory, MRE, which
occurs when overwriting a value in the memory bus, and
Register Neighbor Leakage (RNL), which occurs when the
values of neighboring registers interact with each other [13].
Papagiannopoulos and Veshchikov [13] observe that ROT and
MRE leakages may be exploited with a small number of runs,

4 There were unsatisfiable instances due to associativity-related VBLs when
using aggressive high-level compiler optimizations (O1, O2, and O3)



500, whereas MOT requites much more (40K). Rosita [11]
is a recent approach to mitigate transitional effects that may
lead to power side-channel attacks using an emulation-based
technique. Rosita performs an iterative process to identify
power leakages in software implementations for ARM Cortex
M0 and identifies transitional effects due to ROT, MOT,
MRE, Instruction-Pair Interaction (IPI), and Other Transitions
(OT). IPI occurs when pairs of instructions interact with each
other and OT corresponds to interactions between data of
different instructions. The mitigation introduces a performance
overhead of 21% to 64%. In comparison, SecCG is a generic
compiler-based approach that may be applied to multiple hard-
ware architectures and introduces smaller overhead. However,
a direct comparison would be unfair because Rosita mitigates
more leakage sources.

Wang et al. [7] uses a rule-based system [20, 7] to identify
leaks in a masked implementation and perform local register
allocation and instruction selection transformations to mitigate
these leaks in LLVM. They identify transitional effects due to
register reuse, ROT. Their approach is scalable and the mitiga-
tion introduces small performance overhead compared to non-
optimized code. However, they depend on a non-optimized
compilation in order to preserve the security properties of the
high-level program, which leads to code generation that is
secure against ROT but not optimized. Athanasiou et al. [35]
use the same rule-based system to mitigate ROT leakages on
binary ARM code targeting the ARM Cortex M3 processor.
They are able to reduce the number of potentially vulnerable
register pairs given the instruction order. Athanasiou et al.
confirm that aggressive compiler optimization passes introduce
VBLs. SecCG uses a rule-based system but models a constraint
model that is able to generate optimized code that is secure.

Other approaches perform mitigations at whole-system de-
sign time [43, 44]. The availability of open hardware architec-
tures and, more specifically, RISC-V, has enabled approaches,
such as Coco, which apply software-hardware co-design tech-
niques to mitigate power side-channel attacks [44].

In summary, there are compiler-based and binary rewriting
approaches to mitigate TBLs but all these approaches perform
local transformations that introduce performance overhead.
Instead SecCG trades quality for compilation time and is
suitable for performance critical and vulnerable cryptographic
functions.

Combinatorial Compiler Approaches: Compiler backend
optimizations, like instruction selection, instruction schedul-
ing, and register allocation are known to be hard combinatorial
problems. Hence, solving such problems completely does not
scale for large program sizes. Therefore, popular compilers,
like GCC [45] and LLVM [17], use heuristics that through-
out the years have proved to improve program performance.
However, these heuristics do not guarantee finding the optimal
solution to these backend optimizations.

For critical code and code aimed for compiler-demanding
architectures, combinatorial methods may find an optimized
version of the code that leads to reduced power consumption
and/or high performance benefits. Different works [46, 16,

22, 23] aim to optimize critical code at different levels, like
loops [22], locally [23] or at function level [16]. The optimiza-
tion goals range from execution time, code size, or estimated
energy consumption [22, 16, 23]. The main drawback of
these approaches is scalability [46]. However, a recent work,
Unison [16], allows the optimization of functions of up to
almost 1000 instructions.

A different combinatorial approach for generating opti-
mal program code is superoptimization [47]. Given a code
sequence, superoptimization approaches attempt to find an
equivalent code sequence that reduces the overall execu-
tion time and is provably equivalent to the initial code.
Souper [48], a state-of-the-art superoptimization approach,
performs middle-end optimizations to LLVM IR code. Middle-
end optimizations typically do not take decisions on the
register allocation or the instruction scheduling. Instead, they
enable algorithmic-level code optimizations. Crow [49] is an
approach based on Souper that performs software diversifica-
tion as a security mitigation approach.

To summarize, many combinatorial compiler backend tech-
niques allow low-level code optimization but, to our knowl-
edge, none of them considers the preservation of security
properties against TBLs.

VII. LIMITATIONS

This paper proposes an architecture-agnostic method to
generate high quality code against register-reuse and memory-
bus transitional effects. We aim specifically at small-size
embedded devices that have a predictable cost model and
implement single-issued, non-speculative architectures. Our
approach has clear scalability issues, however, we plan to
investigate its use in non-linearized functions.

Secondly, our approach is limited to two optimizations,
namely register allocation and instruction scheduling. Other
backend optimizations, such as instruction selection may be
beneficial for removing HD leakages for CISC architec-
tures like x86. Another useful optimization for mitigating
optimized implementations may be expression reassociation
(-reassociate in LLVM).

SecCG generates programs that are MRE- and ROT-leak
free. The generated code is straight-line code and thus satisfies
the constant-time programming discipline (in the absence of
caches). However, analyzing programs that contain operations
with operand-dependent latencies (e.g. division) may violate
this property. In addition to this, the generated code may
contain other types of TBLs, which depends on the actual
processor implementation [13].

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a constraint-based compiler backend
to generate code that is both optimized and secure against
power side-channel attacks. We prove that the generated code
is secure according to a non-trivial leakage model, and show
that our approach achieves high code improvement against
non-optimized approaches ranging from 77% to a speedup of
6.6 for two embedded architectures, Mips32 and ARM Cortex



M0. At the same time, our approach introduces a maximum
overhead of 13% from the optimal code. This comes at the
expense of increased compilation time and reduced scalability.

There are several future directions for our work. We are
planning to work on extending the type-inference algorithm
to include function calls and loops. Moreover, by improving
the accuracy of the hardware model of SecCG to model
precisely a specific device, we will be able to improve the
leakage model and compare our approach to approaches like
Rosita [11]. Finally, we believe that combining our approach
with optimizing high-level approaches [14, 15] may further
improve the quality of the generated code.

ACKNOWLEDGMENT

We would like to thank Jingbo Wang for providing support
for the FSE19 tool and Amir M. Ahmadian for the fruitful
discussions and his significant feedback on the paper. Finally,
we would like to thank the anonymous reviewers for their
constructive and valuable feedback.

REFERENCES

[1] P. C. Kocher, “Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems,” in An-
nual International Cryptology Conference. Springer,
1996, pp. 104–113.

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Anal-
ysis,” in Annual International Cryptology Conference.
Springer, 1999, pp. 388–397.

[3] M. Joye, P. Paillier, and B. Schoenmakers, “On Second-
Order Differential Power Analysis,” in Cryptographic
Hardware and Embedded Systems. Springer, 2005, pp.
293–308.

[4] M. Rivain and E. Prouff, “Provably secure higher-order
masking of aes,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems. Springer,
2010, pp. 413–427.

[5] J.-S. Coron, E. Prouff, M. Rivain, and T. Roche, “Higher-
Order Side Channel Security and Mask Refreshing,” in
Fast Software Encryption. Springer, 2014, pp. 410–424.

[6] A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne,
“Sleuth: Automated Verification of Software Power
Analysis Countermeasures,” in International Conference
on Cryptographic Hardware and Embedded Systems.
Springer, 2013, pp. 293–310.

[7] J. Wang, C. Sung, and C. Wang, “Mitigating power side
channels during compilation,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, 2019, pp. 590–601.

[8] H. Eldib, C. Wang, and P. Schaumont, “Formal Verifica-
tion of Software Countermeasures against Side-Channel
Attacks,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, no. 2, pp. 1–24,
2014.

[9] G. Barthe, S. Blazy, R. Hutin, and D. Pichardie, “Se-
cure Compilation of Constant-Resource Programs,” in

CSF 2021 - 34th IEEE Computer Security Foundations
Symposium. IEEE, 2021, pp. 1–12.

[10] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida,
“Constantine: Automatic Side-Channel Resistance Using
Efficient Control and Data Flow Linearization,” Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pp. 715–733, 2021.

[11] M. A. Shelton, N. Samwel, L. Batina, F. Regazzoni,
M. Wagner, and Y. Yarom, “Rosita: Towards Automatic
Elimination of Power-Analysis Leakage in Ciphers,” Pro-
ceedings 2021 Network and Distributed System Security
Symposium, 2021, appears in NDSS 2022.

[12] N. Veshchikov and S. Guilley, “Use of Simulators for
Side-Channel Analysis,” in 2017 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS PW),
2017, pp. 104–112.

[13] K. Papagiannopoulos and N. Veshchikov, “Mind the
Gap: Towards Secure 1st-Order Masking in Software,”
in International Workshop on Constructive Side-Channel
Analysis and Secure Design. Springer, 2017, pp. 282–
297.

[14] S. T. Vu, K. Heydemann, A. de Grandmaison, and A. Co-
hen, “Secure delivery of program properties through
optimizing compilation,” in Proceedings of the 29th In-
ternational Conference on Compiler Construction, 2020,
pp. 14–26.

[15] S. T. Vu, A. Cohen, A. De Grandmaison, C. Guillon, and
K. Heydemann, “Reconciling optimization with secure
compilation,” Proceedings of the ACM on Programming
Languages, vol. 5, no. OOPSLA, pp. 1–30, 2021.

[16] R. Castañeda Lozano, M. Carlsson, G. H. Blindell, and
C. Schulte, “Combinatorial Register Allocation and In-
struction Scheduling,” ACM Trans. Program. Lang. Syst.,
vol. 41, no. 3, pp. 17:1–17:53, 2019.

[17] C. Lattner and V. Adve, “LLVM: a compilation frame-
work for lifelong program analysis amp; transformation,”
in International Symposium on Code Generation and
Optimization, 2004. CGO 2004. IEEE, 2004, pp. 75–86.

[18] T. S. Messerges, E. A. Dabbish, and R. H. Sloan,
“Investigations of power analysis attacks on smartcards.”
Smartcard, vol. 99, pp. 151–161, 1999.

[19] E. Brier, C. Clavier, and F. Olivier, “Correlation Power
Analysis with a Leakage Model,” in International work-
shop on cryptographic hardware and embedded systems.
Springer, 2004, pp. 16–29.

[20] P. Gao, J. Zhang, F. Song, and C. Wang, “Verifying and
Quantifying Side-channel Resistance of Masked Soft-
ware Implementations,” ACM Transactions on Software
Engineering and Methodology, vol. 28, no. 3, pp. 16:1–
16:32, 2019.

[21] R. M. Tsoupidi, R. Castañeda Lozano,
E. Troubitsyna, and P. Papadimitratos, “Supple-
mental material: Securing optimized code against
power side channels,” 2022. [Online]. Avail-
able: https://github.com/romits800/seccon experiments/
blob/main/supp material/main appendix.pdf



[22] M. Eriksson and C. Kessler, “Integrated Code Generation
for Loops,” ACM Transactions on Embedded Computing
Systems, vol. 11S, no. 1, pp. 19:1–19:24, 2012.

[23] C. H. Gebotys, “An efficient model for DSP code gen-
eration: Performance, code size, estimated energy,” in
Proceedings of the tenth International Symposium on
System Synthesis. IEEE, 1997, pp. 41–47.

[24] F. Rossi, P. Van Beek, and T. Walsh, Handbook of
constraint programming. Elsevier, 2006.

[25] P. Shaw, “Using Constraint Programming and Local
Search Methods to Solve Vehicle Routing Problems,” in
International conference on principles and practice of
constraint programming. Springer, 1998, pp. 417–431.

[26] Gecode Team, “Gecode: Generic constraint development
environment,” 2022. [Online]. Available: https://www.
gecode.org

[27] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J.
Duck, and G. Tack, “MiniZinc: Towards a Standard
CP Modelling Language,” in International Conference
on Principles and Practice of Constraint Programming.
Springer, 2007, pp. 529–543.

[28] G. G. Chu, “Improving combinatorial optimization,”
Ph.D. dissertation, The University of Melbourne, Aus-
tralia, 2011.

[29] Google Developers, “Google OR-Tools,” 2022. [Online].
Available: https://developers.google.com/optimization/

[30] G. Barthe, S. Belaı̈d, F. Dupressoir, P.-A. Fouque,
B. Grégoire, and P.-Y. Strub, “Verified Proofs of Higher-
Order Masking,” in Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques. Springer, 2015, pp. 457–485.

[31] R. M. Tsoupidi, R. Castañeda Lozano, and B. Baudry,
“Constraint-based Diversification of JOP Gadgets,” Jour-
nal of Artificial Intelligence Research, vol. 72, pp. 1471–
1505, 2021.

[32] Y. Oren, M. Renauld, F.-X. Standaert, and A. Wool,
“Algebraic Side-Channel Attacks Beyond the Hamming
Weight Leakage Model,” in International Workshop
on Cryptographic Hardware and Embedded Systems.
Springer, 2012, pp. 140–154.

[33] X. Leroy, “A Formally Verified Compiler Back-end,”
Journal of Automated Reasoning, vol. 43, no. 4, p. 363,
2009.

[34] S. Gocht, C. McCreesh, and J. Nordström, “An au-
ditable constraint programming solver,” in International
Conference on Principles and Practice of Constraint
Programming, 2022.

[35] K. Athanasiou, T. Wahl, A. A. Ding, and Y. Fei, “Auto-
matic detection and repair of transition-based leakage in
software binaries,” in Software Verification. Springer,
2020, pp. 50–67.

[36] H. Eldib and C. Wang, “Synthesis of Masking Counter-
measures against Side Channel Attacks,” in International
Conference on Computer Aided Verification. Springer,
2014, pp. 114–130.

[37] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M.

Leino, J. R. Lorch, B. Parno, A. Rane, S. Setty,
and L. Thompson, “Vale: Verifying {High-Performance}
Cryptographic Assembly Code,” in 26th USENIX Secu-
rity Symposium (USENIX Security 17), 2017, pp. 917–
934.

[38] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot,
B. Grégoire, V. Laporte, T. Oliveira, H. Pacheco,
B. Schmidt, and P.-Y. Strub, “Jasmin: High-Assurance
and High-Speed Cryptography,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Com-
munications Security, 2017, pp. 1807–1823.

[39] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and
B. Beurdouche, “HACL*: A Verified Modern Cryp-
tographic Library,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1789–1806.

[40] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer,
Y. Huang, R. Jhala, and D. Stefan, “FaCT: A Flexible,
Constant-Time Programming Language,” in 2017 IEEE
Cybersecurity Development (SecDev), 2017, pp. 69–76.

[41] F. Besson, A. Dang, and T. Jensen, “Information-Flow
Preservation in Compiler Optimisations,” in 2019 IEEE
32nd Computer Security Foundations Symposium (CSF),
2019, pp. 230–23 012.

[42] V. D’Silva, M. Payer, and D. Song, “The Correctness-
Security Gap in Compiler Optimization,” in 2015 IEEE
Security and Privacy Workshops, 2015, pp. 73–87.

[43] D. Šijačić, J. Balasch, B. Yang, S. Ghosh, and I. Ver-
bauwhede, “Towards Efficient and Automated Side
Channel Evaluations at Design Time,” Journal of Crypto-
graphic Engineering, vol. 10, no. 4, pp. 305–319, 2020.

[44] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and
R. Bloem, “Coco:{Co-Design} and {Co-Verification} of
masked software implementations on {CPUs},” in 30th
USENIX Security Symposium (USENIX Security 21),
2021, pp. 1469–1468.

[45] R. M. Stallman, Using the GNU Compiler Collection:
a GNU manual for GCC version 4.3.3. CreateSpace,
2009.

[46] R. Castañeda Lozano and C. Schulte, “Survey on Combi-
natorial Register Allocation and Instruction Scheduling,”
ACM Computing Surveys, vol. 52, no. 3, pp. 62:1–62:50,
2019.

[47] C. W. Fraser, “A compact, machine-independent peep-
hole optimizer,” in Proceedings of the 6th ACM SIGACT-
SIGPLAN symposium on Principles of programming lan-
guages. ACM, 1979, pp. 1–6.

[48] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema,
G. Lup, J. Taneja, and J. Regehr, “Souper: A synthesizing
superoptimizer,” arXiv preprint arXiv:1711.04422, 2017.

[49] J. Cabrera Arteaga, O. Floros, O. Vera Perez, B. Baudry,
and M. Monperrus, “Crow: Code diversification for we-
bassembly,” in MADWeb, NDSS 2021, 2021.





Appendix E

Publication 5

151



Thwarting Code-Reuse and Side-Channel Attacks in Embedded
Systems
Rodothea Myrsini Tsoupidia,∗, Elena Troubitsynaa and Panagiotis Papadimitratosa
aRoyal Institute of Technology KTH, Stockholm, Sweden

ART ICLE INFO
Keywords:
compiler-based mitigation
software diversification
software masking
constant-resource programming

ABSTRACT
Embedded devices are increasingly present in our everyday life. They often process critical in-
formation and hence, rely on cryptographic protocols to achieve security. However, embedded
devices remain particularly vulnerable to attackers seeking to hijack their operation and extract
sensitive information by exploiting side channels and code reuse. Code-Reuse Attacks (CRAs) can
steer the execution of a program to malicious outcomes leveraging existing on-board code without
direct access to the device memory. Moreover, Side-Channel Attacks (SCAs) may reveal secret
information to the attacker based on mere observation of the device. Thwarting CRAs and SCAs
against embedded devices is especially challenging because embedded devices are usually resource-
constraint. Fine-grained code diversification can hinder CRAs by introducing uncertainty to the
binary code; while software mechanisms can thwart timing or power SCAs. The resilience to either
attack may come at the price of the overall efficiency. Moreover, a unified approach that preserves
these mitigations against both CRAs and SCAs is not available. In this paper, we propose a novel
Secure Diversity by Construction (SecDivCon) approach that tackles this challenge. SecDivCon is
a combinatorial compiler-based approach that combines software diversification against CRAs with
software mitigations against SCAs. SecDivCon restricts the performance overhead introduced by the
generated code that thwarts the attacks and hence, offers a secure-by-design approach enabling control
over the performance-security trade-off. Our experiments, using 16 benchmark programs, show that
SCA-aware diversification is effective against CRAs, while preserving SCA mitigation properties at a
low, controllable overhead. Given the combinatorial nature of our approach, SecDivCon is suitable for
small, performance-critical functions that are sensitive to SCAs. SecDivConmay be used as a building
block to whole-program code diversification or in a re-randomization scheme of cryptographic code.

1. Introduction
Nowadays, numerous embedded devices, sensors and

Internet of Things (IoT) devices process and control a large
variety of sensitive information. They are typically resource-
constrained and vulnerable to attacks that aim to manipulate
their operation and/or extract sensitive information [47].
Memory corruption vulnerabilities induce a serious security
threat. Mitigations such as data execution prevention have
eradicated code injection attacks. Nonetheless, Code-Reuse
Attacks (CRAs) achieve hijacking the control flow of a
program using a chain of executable code snippets [58,
53]. These attacks target both general purpose [58] and
embedded devices [49, 30, 8, 55]. At the same time, the
execution of embedded software may leak information about
sensitive data to the adversary via side channels [40, 19, 20].
Side-Channel Attacks (SCAs) allow an attacker to extract
information from the target device by recording side-channel
information, such as execution time or power consumption,
which may depend on secret values.

Mitigating CRAs and SCAs is a double-edged challenge.
In the literature, there are solutions tailored to each of these
attacks for embedded devices. However, there are two main
drawbacks associate with combining individual mitigations.
First, there is no guarantee that the sequential application of
the mitigations preserves the properties of each of them (see

tsoupidi@kth.se (R.M. Tsoupidi); elenatro@kth.se (E.
Troubitsyna); papadim@kth.se (P. Papadimitratos)

ORCID(s): 0000-0002-8345-2752 (R.M. Tsoupidi);
0000-0002-3267-5374 (P. Papadimitratos)

Section 2.1). Second, the mitigation result may accumulate
the introduced overhead from each approach [19], which
may be forbidding, and thus, creates the need for overhead-
aware approaches [66, 64].

In this paper, we address this challenge by proposing
a novel approach that combines fine-grained code diver-
sification against CRAs with software mitigations against
SCAs. Fine-grained code diversification [55] is a mitiga-
tion against CRAs that introduces uncertainty to the binary
code implementation, which makes the attacker payload
nonfunctional. An important advantage of fine-grained soft-
ware diversification compared to other mitigations against
CRAs is its reduced performance overhead [48, 64]. Typical
mitigations against SCAs include software countermeasures
that prohibit the flow of secret information to the attacker,
such as software masking and Constant Resource (CR) pro-
gramming (see Section 2.1). The compilation process may
not propagate correctly these software mitigations and, thus,
the compiler needs to be aware of these properties.

Secure Diversity by Construction (SecDivCon) is a com-
binatorial compiler-based approach that combines code di-
versification against CRAs with mitigations against Timing
Side Channel (TSC) and Power Side Channel (PSC) attacks.
Moreover, SecDivCon uses an accurate cost model for pre-
dictable architectures that allows control over the overall per-
formance overhead of the generated code. SecDivCon is ap-
propriate for diversifying small cryptographic core functions

Tsoupidi et al.: Preprint submitted to Elsevier Page 1 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

that may impose security threats through SCAs. Function-
level diversification may be used for whole-program diver-
sification [64] or in a re-randomization scheme [60] against
advanced code-reuse attacks [7].

This paper contributes:
• an entirely novel (to the best of our knowledge)

composable framework that combines automatic fine-
grained code diversification and side-channel mitiga-
tions;

• a constraint-based model to generate optimized code
against TSCs (Section 3);

• a secure-by-design compiler-based approach that pre-
serves the properties of multiple software mitigations
and enables control over the trade-off between perfor-
mance and security (Section 4);

• evidence that fine-grained automatic code diversifica-
tion introduces side-channel leaks (Section 4.3);

• evidence that restraining diversity to preserve security
measures against SCAs does not have a negative effect
on CRA mitigations (Section 4.5).

Reproducibility: The source code and the evaluation pro-
cess are available online: https://github.com/romits800/

secdivcon_experiments.

2. Problem Statement and Threat Model
Section 2.1 presents the attacks that we consider and

motivates our approach, which combines security mitiga-
tions against CRAs and SCAs. Section 2.2 presents the threat
model, and finally, Section 2.3 defines the problem.
2.1. Background and Motivation
Code-Reuse Attacks (CRAs): CRAs exploit memory cor-
ruption vulnerabilities to hijack the control flow of the victim
program and take control over the system [16, 8, 26]. The at-
tacker selects pieces of executable code from the victim pro-
gram memory, so-called gadgets, and stitches these gadgets
together in a chain that results in a malicious attack. Code-
reuse gadgets typically end with a control-flow instruction,
such as indirect branch, return, or call, which allows the
attacker to build a chain of gadgets. Figure 1a shows a code-
reuse gadget that we extracted using ROPGadget [56] from
an ARM Cortex M0 binary. At address 0x0044, the gadget
copies the value of r2 to register r0 (line 1), then jumps to
the next instruction (line 2) and finally, jumps to the value of
register lr to the next gadget. As demonstrated in Figure 1a,
code-reuse gadgets consist of common instruction sequences
that are frequently available in compiled programs.

The main approaches against CRAs are Control-Flow
Integrity (CFI) and code randomization. CFI [1] enforces
the dynamic execution of the program to conform with the
permitted execution paths, whereas automatic code diver-
sification [35] introduces uncertainty to the location and

1 0x0044 : mov r0 , r2

2 0x0046 : b #0x48

3 0x0048 : bx lr

(a) Gadget 1

1 0x0044 : mov r0 , r3

2 0x0046 : bx lr

3 0x0048 : ...

(b) Gadget 2

Figure 1: Two diversified gadgets in ARM Thumb extracted
from Figure 4 using ROPGadget

1 u32 Xor(u32 pub , u32 key , u32 mask) {

2 u32 mk = mask ^ key;

3 u32 t = pub ^ mk;

4 return t;

5 }

(a) Original C code

2 u32 t1 = pub ^ key;

3 u32 t2 = mask ^ t1;

4 return t2;

5 }

(b) Compiler-induced masking
removal

Figure 2: Masked exclusive OR implementation

instruction sequence of the gadgets in the program mem-
ory. CFI may be impractical for small, resource-constrained
devices due to the diversity of embedded hardware and
the increased overhead [45] in small, often battery-operated
devices. Automatic software diversification provides an effi-
cient mitigation against CRAs [35, 64, 49]. Figure 1 shows
two gadgets in two diversified program variants. Figure 1a
and 1b illustrate that they differ in the first instruction, which
copies the content of the register r2/r3 to r0. An attacker that
has designed an attack that uses the first gadget at address
0x0044 to move an attacker-controlled value from r2 to r0will
fail if the victim uses the second gadget. There are different
ways to diversify software and distribute it to the end users.
In this paper, we consider the app store model [35], where a
centralized repository distributes precompiled code variants
to each end user.
Side-Channel Attacks (SCAs): Usually, embedded de-
vices use cryptographic algorithms, which are vulnerable
to SCAs [33, 40, 10]. These attacks allow the adversary
to extract information about secret values by measuring the
execution time – called timing side channel (TSC) [13] or the
power consumption – called power side channel (PSC) [51]
of the target device. For example, a publicly installed camera
or a smartwatch may be physically exposed to malicious
actors that are able to measure the power consumption of the
device or the execution time of cryptographic tasks to infer
cryptographic keys and retrieve information about sensitive
data.
Power Side Channels (PSCs): PSC attack is a SCA that
uses the power traces of the target device to extract secret
information [69]. A mitigation approach to protect against
PSCs is software masking. Consider the code in Figure 2a.
Function Xor applies software masking to an exclusive or
(xor) operation. The program takes three inputs, pub, which
is a public value, key, which is a secret value, and mask,
which is a randomly generated value. At line 2, the code
performs an exclusive or operation between mask and key to

Tsoupidi et al.: Preprint submitted to Elsevier Page 2 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

1 @ r0: pub , r1: key , r2: mask

2 eors r1 , r2

3 eors r0 , r1

4 bx lr

(a) Secure

2 eors r2, r1

3 eors r0 , r2

4 bx lr

(b) Insecure

Figure 3: Two program variants of Figure 2a for ARM Cortex
M0

randomize the secret value. At line 3, the implementation
performs an additional exclusive or operation between the
previous result and value pub. Figure 3 shows two machine
implementations of the code in Figure 2a in ARM Thumb.
The first implementation in Figure 3a performs the first xor
operation at line 2 and stores the result in register r1 and
the then, performs the second xor operation at line 3 and
stores the result in register r0. The second implementation
in Figure 3b is identical to the first one, apart from the first
xor operation at line 2, where the result is copied to register
r2. The power leakage of the program depends on register-
value transitions, Register-Overwrite Transition (ROT) [46],
based on the Hamming Distance (HD) model [10], which is
widely used for designing PSC attacks and defenses [10, 46].
The leakage using the HD model depends on the exclusive
or of the previous value of a register and the new value.
Thus, as shown in Figure 3a, the leakage depends on two
transitions of registers r0 and r1, with values r1old⊕r1new =
key ⊕ (key ⊕ mask) = mask and r0old ⊕ r0new = pub ⊕
(key⊕ mask⊕ pub) = mask⊕ key. None of the values depends
on a secret value because both values are randomized with
mask. However, in Figure 3b we have a different leakage,
r2old⊕r2new = mask⊕(key⊕mask) = key and r0old⊕r0new =
pub⊕ (key⊕ mask⊕ pub) = mask⊕ key. The first value leaks
information about the key, which is secret (highlighted in
Figure 3b). This means that implementation Figure 3b leaks
secret information. Thus, the embedded devices that use this
variant may be vulnerable to PSCs.
Timing Side Channels (TSCs): TSC attack is another
type of SCA, where the attacker measures the execution time
during the execution of a program to infer secret information.
For example, Figure 4 shows a simple program that contains
a timing vulnerability. In particular, at line 3 there is a branch
that compares the value of key and the value of pub. The
attacker knows and may control the value of pub, whereas
key is a secret value. If the result of the comparison is true,
then the observed execution time will be longer than when
the result is false. Thus, an attacker who can measure the
execution time of the code and knows the value of pub is
able to infer information about the value of key.

The Constant Resource (CR) policy is a software-based
mitigation approach against TSC attacks that aims at elim-
inating timing leaks [44]. The CR policy allows secret-
dependent branches, as long as the different execution paths
require the same execution time. The implementation of
CR code is hardware specific because the same instruction
may take a different number of cycles in different processor

1 u8 check_bit(u8 pub , u8 key) {

2 u8 t = 0;

3 if (pub == key) t = 1;

4 return t;

5 }

Figure 4: Program with secret-dependent branching

1 @ r0: pub , r1: key

2 @ BB#0:

3 movs r2 , #0

4 cmp r1 , r0

5 bne .LBB0_2

6 @ BB#1:

7 movs r0 , #1

8 b .LBB0_3

9 .LBB0_2:

10 mov r0 , r2

11 movs r1 , #1

12 .LBB0_3:

13 bx lr

14 ...

15 ...

(a) Secure variant 1

2 @ BB#0:

3 movs r2 , #0

4 cmp r1 , r0

5 bne .LBB0_2

6 @ BB#1:

7 movs r3 , #1

8 mov r0 , r3

9 b .LBB0_3

10 .LBB0_2:

11 mov r3 , r2

12 mov r0 , r3

13 movs r3 , #1

14 .LBB0_3:

15 bx lr

(b) Secure variant 2

Figure 5: Two secure program variants of Figure 4 for ARM
Cortex M0

implementations. Figure 5 shows two machine implementa-
tions for ARM Cortex M0 that preserve the CR policy of
the program in Figure 4, where the if branch in Figure 4
is balanced with an else branch. In Figure 5a, the first basic
block (lines 3-5) initializes t (line 3) and compares these two
input values (lines 4-5). If the result of the comparison is
true (taken branch), the execution jumps to the third branch,
.LBB0_2, and the branch operation takes three cycles. If the
result of the comparison is false (not-taken branch), the exe-
cution continues to the second branch (@BB#1) and the branch
operation takes just one cycle. To balance the two branches,
the code generation considers the branch overhead for taken
branches and the latency of every instruction, which is three
cycles for the unconditional branch, b, and one cycle for the
move instruction, mov. In particular t(@BB#1)+2 = t(.LBB0_2),
where t(b) is the execution time of the body of basic block
b and +2 corresponds to the branch overhead on a taken
branch. Figure 5b shows another machine implementation of
the code in Figure 5a that also preserves the same constraint
as Figure 5a. The main differences in Figure 5b concern
the register assignment. For example, Figure 5b introduces
additional mov instructions (lines 8, 11, and 12) to transfer
values from one hardware register to another. Without the
constraint that enforces the equality of execution time for
the two branches, a randomization procedure, may break the
CR policy, for example, by adding one No Operation (NOP)
instruction in .LBB0_2.

Tsoupidi et al.: Preprint submitted to Elsevier Page 3 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

Combined Mitigation: Embedded devices that manipu-
late sensitive data are vulnerable to both SCAs and CRAs.
Mitigating SCAs and CRAs in these devices is essential for
protecting sensitive data and the system. A low-overhead
approach against CRA is fine-grained code diversification,
while software mitigations hinder SCAs in cryptographic
software. Avoiding diversifying cryptographic libraries may
lead to CRAs, as shown in recent work by Ahmed et al. [3],
where a CRAs attack may use gadgets from OpenSSL, a
cryptographic library. Similarly, diversifying cryptographic
code may break software mitigations against SCAs, as we
show in Section 4.3. The latter demonstrates that fine-
grained code diversification against CRAs and software
mitigations against SCAs constitute conflicting mitigations.
Therefore, there is a need for combined approaches that
protect against the combination of these attacks.

Figures. 3 and 5 show two different machine-code im-
plementations of programs in Figures 2 and 4, respectively.
Each of these functions includes code-reuse gadgets that
end with instruction bx lr. An attacker may select these
gadgets to perform a CRA. Generating multiple versions
of each program is a form of diversification that hinders
attacks by altering the attacker’s building blocks. At the
same time, these variants should preserve SCA mitigations.
For example, the variant in Figure 3b is not secure against
PSC attacks. To tackle this problem, we propose SecDivCon,
which generates diverse variants protected against CRAs
that are also secure against SCAs.
2.2. Threat Model

We assume that the code implementation contains a
memory vulnerability that allows the attacker to perform a
CRA, in particular a static Return Oriented Programming
(ROP) or Jump Oriented Programming (JOP) attack. We
further assume that the attacker does not have direct access to
the memory of the device. We consider two types of attacker
models for SCAs, Timing Attacker (TA) that measures the
execution time of the program and Power Attacker (PA) that
records the power consumption of the program:
TA: The attacker has access to the software implementation

and the public data but not the secret data. The attacker
is able to extract information about the secret data by
measuring the execution time of the code on the target
device. The measurements are done remotely.

PA: The attacker has access to the software implementa-
tion and the public data but not the secret data. At
every execution, the program under execution gen-
erates new random values and the attacker has no
knowledge of these values. The attacker is able to
extract information about the secret data bymeasuring
the power consumption of the device that the code
runs on. The attacker may accumulate a number of
power traces from multiple runs of the program and
perform statistical analysis, such as Differential Power
Analysis (DPA) [32] or Correlational Power Analysis
(CPA) [10, 46].

crypto.c

sec pol.txt

CF

SA

SecDiv

SecSolv

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

...

SecDivCon

source
code

optimal solution

security
policy

Figure 6: High-level view of SecDivCon

We adopt the leakage model for PSCs from Tsoupidi et al.
[65] and the leakage model for the CR-policy from Barthe
et al. [6].
2.3. Problem Statement

Our goal is to generate code secure against the attacker
models TA and PA. First, we define formally code diversi-
fication. We consider a program p and a set, S, of program
implementations, pi ∈ S, that are functionally equivalent
(∼) with the original program, i.e. ∀pi ∈ S.p ∼ pi and each
other, ∀pi, pj ∈ S.pi ∼ pj . To protect against SCAs, we
define a set of constraints Csec . A program implementation
pi is secure against SCAs (PSC or TSC attacks) if pi ∈
sol(Csec).To protect small embedded devices that are vulnerable
to CRAs and SCAs, SecDivCon generates a pool of diverse
solutions, Ssec , that is a subset of S, and all solutions are
secure against SCAs, namely they satisfy Csec , or pi, pj ∈
Ssec ⊆ S ⟹ pi, pj ∈ sol(Csec) ∧ pi ∼ pj , The goal ofSecDivCon is to generate set Ssec .

3. SecDivCon
SecDivCon uses a combinatorial compiler backend to

combine SCA mitigations with code diversification against
CRAs. Figure 6 shows a high-level view of SecDivCon. The
input to SecDivCon is 1) the security policy, namely which
input values are secret, public, or random, and 2) the input
function in a low-level intermediate representation generated
by a general purpose compiler frontend (CF).

The first stage of SecDivCon is the Security Analysis
(SA) module (Section 3.1), which performs code analysis
and generates the input data for the second stage, SecSolver
(Section 3.2). SecSolver solves the SCA-aware constraint-
based backend model and generates the best-found solution
according to the cost function. Then, SecSolver passes this
solution together with the constraint model to the third
stage, SecDiv (Section 3.3), a constraint-based diversifica-
tion method that is able to generate multiple SCA-aware
solutions. The following sections describe each of the stages
of SecDivCon.

Tsoupidi et al.: Preprint submitted to Elsevier Page 4 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

3.1. Security Analysis Module
The SA module takes as input the security policy and

the input function. Subsequently, SecDivCon propagates the
security policy to each program term using type inference
(Section 3.1.1). In cases when the input program is not
secure against SCAs, SecDivCon performs transformations
(Section 3.1.2) that enable the generation of secure code. The
output of the analysis is the extended constraint model of the
input program, which includes data that is necessary for the
security constraints (Section 3.2).
3.1.1. Type Inference

For both attacker models, TA and PA, SecDivCon uses
type inference to propagate a type, i.e. secret, public, or
random, to each program variable. For example, in Figure 4,
intermediate variable t takes the type public. Similarly, in
Figure 2a, intermediate variables mk and t are assigned type
random (because mask randomizes the value of key). Soft-
ware masking introduces additional challenges to the type
inference algorithm, which has to capture properties such as
(sec ⊕ mask) ⊕ mask = sec. To achieve this, the inference
algorithm uses additional environment structures that keep
track of the random and secret values that an intermediate
variable may contain. The type-inference algorithm that
considers random values is based on previous work [24, 67].
3.1.2. Code Transformations

The implementations of C or C++ programs that are
given as input to SecDivCon may not be secure. Further-
more, the general-purpose middle-end compiler transforma-
tions that SecDivCon uses may break some of the high-
level mitigations. In particular, SecDivCon needs to preserve
the CR property against TA. However, some of the secret-
dependent branches may not be balanced in the source code,
or the high-level compiler optimizations may remove dead
basic blocks [21]. Similarly, SecDivCon needs to generate
secure masked code against PA. The input code is masked,
however, high-level optimizations are known to invalidate
some masking countermeasures [5, 65]. In the following
paragraphs, we discuss the program transformations that
SecDivCon implements before the solving stage protecting
against TA or PA.
Timing Attacker (TA): CR programs may contain secret-
dependent branches. However, these branches should not
result in any execution-time differences. Yet, sometimes,
the source code of the input program contains unbalanced
secret-dependent branches. Figure 4 shows a program that
branches on the secret value (line 3). If the condition is true,
the execution takes at least one cycle (line 4), whereas if
the condition is false, it takes zero cycles. To deal with
these programs, we introduce a balancing block, using two
methods, 1) inserting an empty block (EBB), and 2) copying
one block (CBB).
EBB: To balance an unbalanced secret-dependent block,

EBB adds an empty block that contains NOP opera-
tions. Figure 7a shows a secret-dependent branch that

1 u32 check_bit(u32 pub , u32 key) {

2 u32 t = 0;

3 if (pub == key)

4 t = 1;

5 else

6 // nop;

7 return t;

8 }

(a) Add Empty Block

2 u32 _t, t = 0;

3 if (pub == key)

4 t = 1;

5 else

6 _t = 1;

7 return t;

8 }

(b) Copy Unbalanced Block

Figure 7: Balancing transformations for Figure 4

is balanced using an empty basic block (lines 5-7).
At a later stage, the constraint solver fills this basic
block with an appropriate number of NOP instructions
to balance the secret-dependent branch. In contrast to
CBB, this transformation works also when we want to
balance an unbalanced path with more than one basic
blocks.

CBB: Another way to balance a secret-dependent block that
consists of one basic block is by copying the unbal-
anced block instructions. Figure 7b shows a secret-
dependent branch, where the else branch is a copy of
the if-branch body with inactive instructions. Here,
SecDivCon copies the body of the secret-dependent
branch to a new else body, which contains all the
operations of the original block but assigned to unused
variables (lines 5-7).

Power Attacker (PA): Previous work has shown that high-
level compiler optimizations may break software masking
against PSC attacks [5, 65]. For example, Figure 2b shows
the result of high-level compiler optimizations (-O1 to -O3)
on masked code. The code performs first the xor operation
between the public value pub and the secret value key (line
2) and then, performs the second xor operation with the
result of the first and the mask. Performing the operations in
this order fails to randomize the secret value and leads to a
PSC leak at line 2. To mitigate this type of transformation,
SecDivCon transforms the code to the original operand order
(see Figure 2a).
3.2. Security Constraint Model

SecSolv (see Figure 6) takes as input the data from the
SAmodule and applies constraints in order to generate SCA-
aware code. First, we will give an overview of a combinato-
rial compiler backend (Section 3.2.1) and then proceed with
the SCA-aware model (Section 3.2.2).
3.2.1. Constraint-based Compiler Backend

We consider a constraint-based compiler backend that
implements two low-level optimizations, instruction schedul-
ing and register allocation [38]. A constraint model defines
all legal instruction orders and register assignments [37].
More formally, a constraint-based compiler backend may
be modeled as a Constraint Optimization Problem (COP),

Tsoupidi et al.: Preprint submitted to Elsevier Page 5 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

P = ⟨V ,U, C,O⟩, where V is the set of decision variables
of the problem, U is the domain of these variables, C is
the set of constraints among the variables, and O is the
objective function. A constraint-based compiler backend
aims at minimizingO, which typically models the execution
time or size of the code.

A program is modeled as a set of basic blocks B. Each
basic block contains a number of optional operations that
may be active or not. An active operation appears in the
final generated binary code, whereas inactive operations are
not present in the final code. A set of hardware instructions
may implement each operation that consists of a number of
operands. Each operand may be implemented by different,
equally-valued virtual registers, which are the result of copy-
ing the content of a register to another register or memory
(copies). The model maps each virtual register to a set of
hardware registers andmemory locations. The solver assigns
each virtual register with one hardware register or memory
location. Every assignment p of the problemc variables that
satisfies the constraints, C , is a solution to P , p ∈ sol(P )
and represents a compiled program.

A typical objective function of a constraint-based back-
end minimizes different metrics such as code size and ex-
ecution time. These can be captured in a generic objective
function that sums up the weighted cost of each basic block:

∑
b∈B

weigℎt(b) ⋅ cost(b).

The cost of each basic block is a variable that differs among
solutions, whereas weight is a constant value that represents
the contribution of the specific basic block to the total
cost. This cost model is accurate for predictable hardware
architectures, such as microcontrollers. These architectures
do not include cache hierarchy, dynamic branch prediction,
and/or out-of-order execution, which reduce predictability.
3.2.2. Side-Channel Mitigation Constraints

The constraint-based solver aims at optimizing code
given an accurate cost model for predictable microcon-
trollers. However, SecDivCon aims at generating SCA-
secure code. Given the constraint problem P = ⟨V ,U, C,O⟩
that describes the combinatorial compiler backend, we
extend the constraints C , with a set of constraints Csec thatcapture the properties of the SCA mitigations. Then, the
problem becomes Psec = ⟨V ,U, C ∪Csec , O⟩ and the goal isto find the solution that optimizes the cost function,O, while
satisfying all constraints. The following paragraphs describe
briefly the constraints for the two attacker models.
Timing Attacker (TA): For TA, the SA module generates
a list of sets of paths, patℎssec . Each element in the list
contains the set of possible paths starting from one secret-
dependent branch. To generate the set of paths SA applies a
path-finding algorithm (see Section A).

The constraints that guarantee the preservation of the
CR policy are based on the paths (patℎssec) that SA pro-
vides to the solver. For each set of paths that depends on a
secret value, we define a constraint balance_blocks, which

guaranties that all paths in the set have the same execution
time.
balance_blocks(patℎssec ):

∀p1, p2 ∈ patℎssec .
∑

b∈p1
cost(b) =

∑
b∈p2

cost(b)

In particular, for each set of paths that depend on a
secret value (seci), we apply the balance_blocks constraint,
i.e. ∀patℎsseci ∈ patℎssec . balance_blocks(patℎsseci ). Inthis case, we have one security constraint, i.e. Csec =
{balance_blocks}.
Power Attacker (PA): The model against PSCs depends
on the constraint model in previous work [65]. This model
focuses on two leakage sources, namely, ROT and Memory-
Remnant Effect (MRE).

ROT leakages occur when there is a value transition in
a hardware register, namely when a new value replaces the
previous value of a register. When this transition depends on
a secret value, we have a secret leak. The constraint model
enforces the absence of these leaks in the generated code
by constraining register allocation. More specifically, for
ROT leaks, SA generates all pairs of intermediate variables,
(t1, t2) ∈ RPairs, that should not be assigned to the same
register (r(t)) subsequently (subseq).
conflict_rassign(RPairs):
∀t1, t2 ∈ RPairs. r(t1) = r(t2) ⟹ ¬subseq(t1, t2)

Similarly, MRE corresponds to a leak when there is a
secret-dependent transition at the memory bus, i.e. when a
load or store operation overwrites the previous value in the
bus. The constraints that ensure secure code generation are
similar with those against ROT and enforce the instruction
order of memory operations. In particular, for MRE leaks,
SA generates all pairs of memory operations,
(o1, o2) ∈ MPairs, that should not be scheduled one after
the other (msubseq).
conflict_order(MPairs):

∀o1, o2 ∈MPairs. ¬msubseq(o1, o2)

In this case, we have two security constraints that protect
against ROT and MRE leaks, i.e. Csec = {conflict_rassign,
conflict_order}.
3.3. Secure Code Diversification

Constraint-based diversification [27, 29] aims at gen-
erating different solutions for a given problem rather than
one solution. For optimization problems, there is often the
requirement to generate good or optimal solutions with
regard to the optimality function,O. Constraint-based diver-
sification defines the notion of distance measure, �, which
is a constraint between problem solutions and measures how
different two solutions of the problem are.
3.3.1. Diversification Problem

Given our SCA-aware optimization problem Psec =
⟨V ,U, C ∪ Csec , O⟩, the diversification problem attempts
to find the set of distinct solutions S that are solutions of
P ′
sec = ⟨V ,U, C ∪ Csec⟩ and the distance between the

Tsoupidi et al.: Preprint submitted to Elsevier Page 6 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

solutions satisfies �, i.e. S = {p | p ∈ sol(P ′
sec) ∧ ∀p′ ∈

S . p′ ≠ p ⟹ �(p, p′)}.
To generate the set of diverse programs S, SecDiv (see

Figure 6) takes the best solution from the code generation
part and generates multiple solutions using the security-
aware constraint model (SecSolver in Figure 6), similar to
previous work [64]. In particular, SecDiv generates solutions
in the neighbourhood of this solution that satisfy
Copt = O < g⋅o, where g is themaximum allowed optimality
gap and o the cost of the best-found solution.
3.3.2. Diversifying Transformations

The diversifying transformations that SecDiv supports
are 1) hardware register assignment, 2) register copying, 3)
memory spilling, 4) constant rematerialization, 5) instruc-
tion order, 6) NOP insertion, and 7) operand order in two-
address instructions. Hardware register assignment permits
changing the register assignment for instruction operands.
Register copying enables copying the content of a register to
another register for future uses of the register value. Memory
spilling allows copying values from a register to the stack
and from the stack to a register. Spilling affects the size of the
stack and thus leads to stack size diversification, however,
spilling increases execution-time overhead. Rematerializa-
tion allows re-executing an instruction instead of copying its
result. SecDiv may also alter the instruction order as long as
there are not data dependencies and insert NOP instructions
by delaying the issue cycle of an instruction. Finally, SecDiv
may alter the operand order in two-address instructions.

4. Evaluation
The evaluation of SecDivCon consists of three parts,

1) evaluation of the CR-preserving code generation that
we propose in this paper, 2) evaluation of introduced leaks
in mitigated source code by current diversification tools,
and 3) evaluation of SCA-aware code diversification. Sec-
tion 4.1, describes the implementation, experimental setup,
and benchmarks, while Sections 4.2-4.5 present the evalua-
tion of SecDivCon.
4.1. Evaluation Setup

In the following parts, we present the implementation,
experimental setup and benchmarks we use to evaluate
SecDivCon.
4.1.1. Implementation

We implement SecDivCon as an extension of Uni-
son [37], a combinatorial compiler backend that uses Con-
straint Programming (CP) [54] to optimize software func-
tions. To do this, Unison combines two low-level opti-
mizations, instruction scheduling and register allocation,
and achieves optimizing medium-size functions with im-
provement over LLVM [37]. SecDivCon takes as input the
function in LLVM’s Machine Intermediate Representation
(MIR) and outputs multiple versions of the function that
satisfy the compiler and security constraints. For generating
PSC-free code, we adapt the model of SecCG [65], which

Table 1
Benchmark description; Ni is the number of machine instruc-
tions that are input to the compiler backend; Nb is the number
of basic blocks; A stands for ARM Cortex M0; and M stands
for Mips; Ip, Is, and Ir is the number of public, secret, and
random input arguments, respectively

Prg Description Ni Nb Input Vars
A M A M Ip Is Ir

P0 SecXor 7 7 1 1 1 1 1
P1 AES Shift Rows 8 8 1 1 0 2 2
P2 Messerges Boolean 11 11 1 1 0 1 2
P3 Goubin Boolean 13 13 1 1 0 1 2
P4 SecMultOpt_wires 18 18 1 1 1 1 3
P5 SecMult_wires 18 18 1 1 1 1 3
P6 SecMultLinear_wires 19 19 1 1 1 1 3
P7 CPRR13-lut_wires 48 48 1 1 1 1 7
P8 CPRR13-OptLUT_wires 48 48 1 1 1 1 7
P9 CPRR13-1_wires 52 52 1 1 1 1 7
P10 Whitening 113 88 1 1 16 16 16
C0 If check (Figure 4) 10 9 3 3 1 1 -
C1 Share’s Value 23 26 6 5 1a 2a -
C2 Mult. Modulo 8 28 24 8 6 1 1 -
C3 Modulo Exponentiation 51 36 7 7 1 2 -
C4 Kruskal 51 55 9 9 1a 3a -
aThe input is an address to an array of secret values

generates optimal code that is secure against ROT and
MRE leakages. For generating CR code, we implement
the path-extraction algorithm (see Section A) in Haskell
as part of Unison’s presolving process. We implement the
path-balancing constraints (see Section 3.2.2) as part of
the constraint model, which is written using the Gecode
C++ library [25]. SecDivCon combines the SCA-aware
mitigations with a diversification scheme [64] to generate
multiple function variants. We target two architectures, 1)
a generic Mips32 processor and 2) the ARM Cortex M0
processor [4].
4.1.2. Experimental Setup

All experiments run on an Intel®Core™i9-9920X pro-
cessor with maximum frequency 3.50GHz per core and
64 GB of RAM running Debian GNU/Linux 10 (buster).
We use LLVM-3.8 as the front-end andmiddle-end compiler
for these experiments. We repeat all experiments five times,
with different random seeds (where applicable) and report
the mean value for each metric in the results.
4.1.3. Benchmarks

Our approach concerns programs that handle secret in-
formation and are, thus, vulnerable to SCAs. Therefore, we
have selected eleven masked cryptographic core functions
that may be vulnerable to PSCs [65, 67] and five functions
that exhibit secret-dependent timing variations and are used
in cryptographic context [39]. Table 1 shows the benchmarks
with information about the origin of the function, the func-
tion size in number of instructions (Ni) and the number
of basic blocks (Nb) for ARM Thumb (A) and Mips (M),

Tsoupidi et al.: Preprint submitted to Elsevier Page 7 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

Table 2
Optimality overhead in cycles for CR-preserving code-
generation; µ denotes secure variants and b non-secure
variants; Oh stands for Overhead

Prg
ARM Cortex M0 Mips32
Cycles Oh (%) Cycles Oh (%)
µ b µ b

C0 26 20 30 13 10 30
C1 1406 1220 15 1105 857 28
C2 1039 803 29 975 571 70
C3 3012 1984 51 7641 5843 30
C4 16130 13590 18 10429 8905 17

Table 3
Compilation-time overhead in seconds for CR-preserving code
generation; µ denotes secure variants and b non-secure
variants; Oh stands for Overhead

Prg
ARM Cortex M0 Mips32
t (s) Oh (%) t(s) Oh (%)
µ b µ b

C0 0.32 0.19 68 0.81 0.55 47
C1 1.68 0.91 84 4.42 2.56 72
C2 8.48 0.81 946 2.65 1.33 99
C3 57.26 23.46 144 8.02 4.97 61
C4 150.80 92.72 62 27.52 7.93 247

and finally, the input variables, (Ip public, Is secret, and Irrandom input variables).
Masked Programs: The masked programs that we use in
this evaluation consist of eleven programs, P0 to P10, most
of which originate from the work by Wang et al. [67]. These
benchmark programs consist of masked cryptographic core
functions that are vulnerable to PSC attacks.
CR Programs: For evaluating the CR property we use
Listing 4 and four benchmark programs used by Mantel and
Starostin [39]. The code for these benchmarks in C including
security-policy annotations is available by Winderix et al.
[68]. These implementations are vulnerable to timing at-
tacks [39].
4.2. Effectiveness and Efficiency of TSC-Aware

Code Generation
This section evaluates the CR-preserving code genera-

tion in three dimensions, 1) performance overhead, 2) com-
pilation overhead, and 3) security.
4.2.1. Performance Overhead

The CR-preserving code generation extends Unison [37]
with constraints that enforce the CR property. For opti-
mizing code against TSCs, SecDivCon optimizes the gen-
erated code given the compiler-backend constraints and
the newly introduced security constraints. Generating CR-
preserving programs introduces performance overhead due
to the introduction of new basic blocks and/or NOP padding
for balancing secret-dependent branches. To estimate the
overhead on the generated code, we utilize the cost model

Table 4
Security Evaluation using a WCET tool to compare the
execution time: ⊤ denotes a symbolic value, v denotes a set of
concrete values, and ai corresponds to the itℎ input argument

Prg ARM Cortex M0 Mips32
Input µ Input µ

C0 a0,a1 =⊤ 3 a0,a1 = ⊤ 3

C1 a0,a1,a2,a3 = ⊤a 3 a0,a1,a3 = ⊤, a2 = v 3

C2 a0,a1,a2,a3 = ⊤ 3 a0,a1,a2,a3 = ⊤ 3

C3 a0,a1,a2,a3 = ⊤a 3 a0,a1,a3 = ⊤, a2 = v 3

C4 a0,a1,a2,a3 = va,b 3 a0,a1,a2 = ⊤, a3 = v 3
aVerified only the secret-dependent branches to improve
scalability and accuracy
bThe concrete values correspond to addresses of the inputs

(see Section 3.2.1) of the constraint-based compiler back-
end [37]. Table 2 shows the performance overhead of
the CR-preserving code generation backend of SecDivCon
(µ) compared to Unison that is not security aware (b).
SecDivCon has a maximum overhead of 70% over Unison
for C2. The introduced overhead is due to the introduction
of new basic blocks and the extension of other basic blocks
in order to balance secret-dependent execution paths. In
contrast to the CR-preserving code generation, PSC-aware
code generation does not introduce significant execution-
time overhead [65]. One reason for this is that the CR
policy affects directly the execution time of the generated
code because it enforces secret-dependent block balance by
increasing the execution time of all secret-dependent paths
to reach the longest path.
4.2.2. Compilation Overhead

The introdution of new constraints to satisfy the constant-
resource property in the constraint model may lead to
increased compilation time compared to non-secure compi-
lation in Unison. To evaluate the compilation-time overhead,
we compare the compilation time of SecDivConwithUnison
measuring the solving time. Table 3 shows the compilation-
time overhead of SecDivCon (µ) compared to Unison (non-
CR-preserving code optimization) [37] (b). For ARM
Cortex M0, the compilation time is at most ten times slower
in SecDivCon compared to Unison for C2. For Mips, we
observe lower slowdown up to 3.5 times for C4. PSC-aware
code generation [65] demonstrates a similar difference in the
compilation-time slowdown between the two architectures.
Here, the introduced compilation-time slowdown is mainly
due to the introduced constraints for balancing the cost of
different paths, which introduces inter-block dependencies
that delay the solving process. At the same time, we notice
larger absolute compilation times for ARM cortex M0
than for Mips. This is due to the characteristics of the
ARM Thumb architecture compared to Mips32, including
a smaller number of general-purpose hardware registers and
two-address instructions.

Tsoupidi et al.: Preprint submitted to Elsevier Page 8 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

4.2.3. Security Evaluation
SecDivCon uses a constraint model to generate secure

variants. To verify the effectiveness of SecDivCon against
timing side channels, we use two Worst-Case Execution
Time (WCET) tools for the two architectures we are in-
vestigating. WCET is typically a sound overapproximation
of the execution time of the program, whereas Best-Case
Execution Time (BCET) is a sound underapproximation of
the execution time. For Mips, we use KTA [11, 63]. KTA
is a tool that extracts the best- and worst-case execution
time for a binary program. For evaluating ARM Cortex
M0, we use a symbolic-execution-based WCET tool1 that
generates the WCET and BCET for a sequence of binary
instructions [36]. To verify that SecDivCon generates CR
programs, we test the generated binaries using aWCET tool.
We give as inputs symbolic values that range over all integer
values (⊤) for secret values and public values that do not
affect the control flow, whereas for public values that affect
the control flow (e.g. loop bounds), we provide concrete
values. If the returned BCET and WCET are equal, then we
have evidence that the program’s execution time is secret
independent for the given concrete inputs. Performing the
same experiment using multiple concrete inputs gives an
indication that the program satisfies the CR property. More
specifically, we compare the WCET and the BCET of the
function for different concrete values of the public inputs. If
∀p ∈ INtest.wcetp = bcetp for all concrete public inputs,
INtest, we say that the program is constant resource modulo
inputs2. For each of the benchmark programs, Table 4 shows
the type of input value we use (Input) and the result of
the comparison between WCET and BCET (µ). For the
experiment, we provide different values for the concrete
value v. Symbol3 denotes that the experiments for all inputs
result in the same WCET and BCET. The result of this
experiment indicates that the generated code does not violate
the CR property.
4.3. Effect of Code Diversification on

Side-Channel Mitigations
We investigate how diversification approaches affect

side-channel mitigations. In particular, we investigate to
what extent a freely-available3 code diversification tool,
Multicompiler (MCR) [28] violates software mitigations
against SCAs. To do that, we use MCR to diversify bench-
mark programs that implement security mitigations against
SCAs at source-code level. Then we verify whether the
generated program variants (for the respective benchmarks)
satisfy the software mitigations against PSC or TSC attacks.
For PSC, we use a tool4 by Wang et al. [67], whereas
for TSC, we measure the execution time manually. For
these experiments, we generate 50 random variants by

1CM0 WCET: https://github.com/kth-step/HolBA/tree/dev_

symbexec_form
2Note that possible overapproximations of the WCET or underap-

proximations of the BCET may lead to inequality of BCET and WCET,
regardless of the program satisfying the CR property.

3MCR: https://github.com/securesystemslab/multicompiler.git
4FSE19 tool: https://github.com/bobowang2333/FSE19

Table 5
Rate of variants that contain ROT vulnerabilities in MCR

Prg [67] MCR
#leaks #leaks (% of variants) ≥ one leak

P0 1 1 (62%) 0 (38%) 62%
P1 0 2 (92%) 1 (2%) 0 (6%) 94%
P2 1 2 (100%) 100%
P3 1 1 (70%) 0 (30%) 70%
P4 1 1 (100%) 100%
P5 1 1 (96%) 0 (4%) 96%
P6 3 4 (52%) 5 (48%) 100%
P7 14 14 (100%) 100%
P8 16 16 (100%) 100%
P9 12 12 (100%) 100%
P10 5 5 (100%) 100%

providing 50 different random seeds toMCR.MCR supports
randomization at multiple layers of the compilation pro-
cess, including hardware-register randomization and NOP-
insertion. These randomizing transformations may affect
PSC and TSC mitigations, respectively. In the following
paragraphs, we investigate how hardware-register random-
ization affects ROT leakages and how NOP-insertion affects
the CR property.
Hardware-Register Randomization: Hardware-register
randomization [18] is a form of fine-grained software di-
versification that generates program variants that differ with
regard to the register assignment at the register-allocation
stage of the compilation process. Among other transforma-
tions, MCR implements hardware-register randomization.
To identify the number of ROT leaks of each of the variants,
we implement parts of the tool by Wang et al. [67] to
extract information from the register allocation step inMCR.
Subsequently, we use the tool by Wang et al. [67] to identify
the leaks in the variants.

For each of the masked benchmarks, Table 5 shows the
number of leaks that appear in the baseline, which uses the
LLVM compiler [67] and the rate of variants that contain
different numbers of leaks after diversification with MCR.
The last column shows the rate of variants that have at least
one leak. Overall, there are leaking variants in all programs,
ranging from 62% for P0 and 100% for P2, P4, P6-P10.
For programs P0 to P6, the number of leaks differs for
the generated variant population. In particular, MCR may
introduce leaks in P1, P2, and P6 that the baseline does
not generate. Inversely, MCR may generate variants that
are leak-free for P0, P1, P3, and P5. This means that the
hardware-register randomization transformation allows the
generation of leak-free variants.

To summarize, we observe that randomization may
break masking mitigations, whereas, in many cases, there
is a space for generating leak-free variants.
NOP Insertion: NOP insertion is a form of fine-grained
software diversification that generates program variants that

Tsoupidi et al.: Preprint submitted to Elsevier Page 9 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

Table 6
Number of variants (N) and diversification time (t) in seconds for SCA-aware (µ) and non SCA-aware (b) diversification in ARM
Cortex M0 and Mips32; TO stands for time limit ( ten minutes); SecDivCon controls the execution-time overhead, here we show
the results for a maximum execution-time overhead of 0% and 10%.

Prg

ARM Cortex M0 Mips32
0% 10% 0% 10%

µ b µ b µ b µ b

N t (s) N t (s) N t (s) N t (s) N t (s) N t (s) N t (s) N t (s)
P0 1 - 2 0.00 8 8.09 18 150.88 17 0.03 18 0.01 17 0.03 18 0.01
P1 5 0.17 16 0.05 109 194.53 200 9.47 200 0.36 200 0.12 200 1.70 200 0.26
P2 2 0.00 2 0.00 84 397.67 65 196.98 200 0.44 200 0.12 200 3.65 200 0.41
P3 39 217.16 9 0.17 200 73.97 200 15.90 200 0.70 200 0.20 200 4.98 200 0.51
P4 200 28.83 200 2.70 200 27.21 200 2.09 200 85.91 200 3.03 200 74.03 200 3.80
P5 200 28.76 200 2.71 200 27.36 200 2.10 200 86.31 200 3.05 200 73.48 200 3.78
P6 200 31.18 200 2.48 200 29.01 200 2.25 200 134.76 200 3.75 200 215.73 200 3.94
P7 51 TO 200 18.60 51 TO 200 22.69 40 TO 200 20.32 32 TO 200 55.32
P8 69 TO 200 15.47 58 TO 200 20.55 47 TO 200 20.40 34 TO 200 65.83
P9 185 TO 200 18.16 165 TO 200 23.24 6 TO 200 306.09 8 TO 200 171.21
P10 53 TO 200 23.27 20 TO 200 35.28 36 TO 200 16.44 15 TO 200 17.34
C0 200 0.65 4 41.15 200 0.38 162 247.78 200 0.32 19 0.04 200 0.46 200 1.77
C1 200 1.22 200 1.69 200 2.96 200 2.76 200 0.88 200 0.39 200 7.66 200 5.47
C2 200 0.53 200 0.25 200 2.51 200 1.51 200 0.99 200 0.43 200 4.43 200 1.66
C3 200 6.39 200 5.24 200 8.55 200 8.53 200 4.07 200 2.69 200 22.09 200 19.88
C4 200 14.11 200 10.25 200 27.53 200 17.19 200 10.27 200 7.85 200 27.87 200 18.97

contain randomly inserted NOP operations. MCR imple-
ments NOP-insertion randomization [28]. The source code
of programs C0 to C3 does not comply with the CR policy.
To identify CR violations, we consider C0, C1 and C3
because they are simple to verify manually. We modify the
C implementations of C0, C1 and C3 to balance the secret-
dependent branches and consider a simple timing model for
the processor that considers one cycle per instruction. The
results are that 88% of C0, 74% of C1, and 72% of C3 are
unbalanced. MCR inserts NOP operations randomly without
information about secret balancing and, thus, generates non-
CR-preserving code5. To summarize, NOP insertion may
break branch balancing for CR programs.
4.4. SCA-Mitigation Effect on Code Diversification

To evaluate the effect of SCA mitigations on code di-
versification, we compare the effect of SCA-aware diver-
sification with SCA-unaware diversification. We evaluate
SecDivCon in two axes, 1) diversity and 2) diversification
scalability.

Table 6 shows the number of variants (N) and the diversi-
fication time in seconds (t(s)) for each of the benchmarks and
each of the configurations of the diversification experiments.
The diversification time consists of the time it takes to
generate diverse program variants given an initial optimized
solution. We use a time limit of ten minutes. In addition, we
use upper bound (200) on the number of variants, because
of the increasing complexity of the pairwise gadget-overlap
rate (see Section 4.5) that depends on all pairs of generated
variants. For each of the two architectures, ARM Cortex M0

5Here, we do not investigate multi-variant execution, where different
variants are loaded dynamically, which may hinder timing attacks by
randomizing the execution time.

and Mips32, we perform SCA-aware (µ) diversification and
SCA-unaware (b) diversification using 0% (optimal based
on the cost model) and 10% optimality gap. The optimality
gap, p, depends on the cost model of the combinatorial
compiler backend and the input best-found solution. The
optimality gap results in a constraint that ensures that the
cost of each generated variant is at most p% worse than the
best-found solution.

In the upper part of Table 6, we see that for ARMThumb
there is limited diversity for small benchmarks (P0-P3),
especially when restricting the solutions to the optimal/best-
found ones (0% optimality gap). Increasing the optimality
gap to 10% enables SecDivCon to generate a larger num-
ber of program variants. For both cases, the presence of
PSC-mitigating constraints reduces the number of available
variants. The opposite occurs for P3, where SecDivCon is
able to generate more variants compared to PSC-unaware
code diversification. This is due to the introduction of ad-
ditional transformations (random variable copies) in PSC-
aware compilation, which increases the search space and
diversification ability of SecDivCon.

For larger benchmarks (P4-P6), SecDivCon is able to
generate all the requested variants (200). Looking at the
diversification time of these benchmarks, we notice a clear
overhead of PSC-aware compared to PSC-unaware diversifi-
cation. The overhead is up to a slowdown of 55 times for P6
in Mips32. For the largest benchmarks, P7-P10, SecDivCon
reaches the time limit (TO) and the number of generated
variants is significantly less than for the PSC-insecure vari-
ant generation. Interestingly, increasing the optimality gap
to 10% decreases the number of generated variants. As
we see in small benchmarks, increasing the optimality gap
allows for non-optimal (according to the model) solutions,

Tsoupidi et al.: Preprint submitted to Elsevier Page 10 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

which increases the available variants. However, increasing
the optimality gap, increases also the search space, which
increases the solver overhead for locating solutions. This
results in a reduction of the generated solutions.

We observe similar trends for both Mips32 and ARM
Thumb. The main difference is that among small bench-
marks, only P0 with 0% optimality gap appears to lead to
reduced diversity in Mips32. At the same time, the differ-
ence in diversity between secure and non-secure variants
is smaller in Mips32 (17 compared to 18 in P0) than for
ARM Thumb (1 compared to 2 in P0). The reason for this
is that Mips32 provides a larger number of general-purpose
registers that may replace vulnerable register combinations
for ROT leakages.

The lower part of Table 6 shows the results for TSC-
aware diversification. Here, SecDivCon is able to generate
200 function variants for all benchmarks. Interestingly, for
C0, the number of variants for TSC-unaware diversifica-
tion is less than 200 because our CR mitigation introduces
performance overhead (see Section 4.2) and thus, increased
diversification capacity. The diversification-time overhead
is less than for PSC-aware diversification, reaching up to a
slowdown of eight times (C0, 0% optimality gap, Mips32).
In all cases, SecDivCon was able to generate 200 variants in
less than 30 seconds.

To summarize, we observe a clear effect on the diversifi-
cation time and available diversity in SecDivCon compared
to SCA-unaware code diversification. This effect is more sig-
nificant in PSC-aware diversification, where there is a gen-
eral decrease in diversity and increase in the diversification-
time slowdown. TSC-aware diversification appears to affect
mainly diversification time, whereas in some cases, the CR
countermeasure increases the available diversity. Nonethe-
less, in almost all cases, SecDivCon generates program
variants within ten minutes.
4.5. Effect of Security Constraints on Code-Reuse

Attacks
This section evaluates the effect of SCA-aware diversi-

fication on the effectiveness against CRAs. To evaluate the
effectiveness of SecDivCon against CRAs, we measure the
rate of code-reuse gadgets that are relocated or transformed
among different variants. We perform this evaluation at the
generated binary ELF [22] files. This evaluation uses ROP-
gadget6, a tool that extracts code-reuse gadgets from a binary
and Capstone, a lightweight disassembly framework. We
extract the gadgets from the .text section of the generated
ELF files. Similarly to previous work [28, 48], we assess
the gadget-overlap rate srate(pi, pj) for each pair of variants
pi, pj ∈ S in the set of generated variants, S, to evaluate
the effectiveness of SecDivCon against CRAs. This metric
returns the rate of the gadgets of variant pi that appear atthe same address in the second variant pj . The procedure
for computing srate(pi, pj) is as follows: 1) run ROPgadget
on variant pi to find the set of gadgets gad(pi) in variant
pi, and 2) for every g ∈ gad(pi), check whether there

6ROPgadget: https://github.com/JonathanSalwan/ROPgadget

exists a gadget identical to g at the same address in the
second variant pj . Before the comparison, we remove all
NOP instructions. The smaller the srate is, the fewer gadgets
are shared among program variants, and thus, the highest
the effect against CRAs. Note that srate does not check
the semantic equivalence of the gadgets, and hence, there
may be false negatives, namely pairs of gadgets that are
syntactically different but semantically equivalent. We use a
time limit of ten minutes and an upper bound on the number
of variants to generate because of the increasing complexity
of the pairwise gadget-overlap rate that depends on all pairs
of generated variants.

Table 7 shows the rate of shared code-reuse gadgets
among the generated variants for ARM Cortex M0 and
Mips32. For each processor, Table 7, shows the results for
two configurations that allow variants to introduce at most
0% to 10% execution-time overhead. We compare SCA-
aware variants (µ) and SCA-unaware variants (b). For each
of these cases, Table 7 shows the srate, i.e. rate of pairs of
variants, in the form of a histogram with three buckets. The
buckets represent the rate of variant pairs that share 1) 0% of
their gadgets (0 in Table 7), 2) (0%, 20%] of the gadgets (20
in Table 7), or 3) (20%, 100] of the gadgets (100 in Table 7).
The goal of SecDivCon is to generate variants that share as
few gadgets as possible, i.e. the variant pairs share no gadgets
(0 in Table 7).

In Table 7, we observe a general difference between
the two processors, with SecDivCon achieving lower gadget
survival rate for Mips32 than ARMCortex M0. We describe
the results for the two processors in the following.

In ARM Cortex M0, with 0% allowed execution-time
overhead, for both SCA-aware and SCA-unaware diversi-
fication, the mode of the pairwise survival rate for the
majority of the benchmarks lies within (0%, 20%]. For SCA-
aware diversification for 13 benchmarks the mode of the
distribution is under (0%, 20%] and for two is 0% (P10 and
C4). The results for SCA-unaware diversification are similar,
with P9 having improved gadget elimination and P10, C0,
C3, and C4 having reduced gadget-elimination ability than
SecDivCon. Increasing the optimality gap to 10% results in
reduced survival rate (improvement). In particular, for SCA-
aware diversification, five benchmarks have a distribution
with the mode in 0%, ten have their mode under (0%, 20%],
and one under (20%, 100%]. Here, the results for SecDivCon
are similar to SCA-unaware diversification, with C0 showing
better results in SCA-unaware diversification.

In contrast, for Mips32, most experiments (apart for C0,
C1, and C3 with 0% optimality gap) have their mode under
0% survival rate, which means that the majority of variant
pairs do not share any gadgets. The reason why Mips32
appears to achieve higher gadget relocation/diversification
is the characteristics of the architecture with many general
purpose registers. ARM Cortex M0, on the other hand, has
significantly fewer general-purpose hardware registers and
multiple 2-address instructions that are highly constrained.

To summarize, the results show relatively low gadget
survival rate for bothARMCortexM0 andMips32, whereas,

Tsoupidi et al.: Preprint submitted to Elsevier Page 11 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

Table 7
CRA gadget-overlap rate in pairs of variants; µ denotes secure variants and b non-secure variants

Prg

ARM Cortex M0 Mips32
0% 10% 0% 10%

µ b µ b µ b µ b
0 20 100 0 20 100 0 20 100 0 20 100 0 20 100 0 20 100 0 20 100 0 20 100

P0 - - - - - 100 23 - 77 21 - 79 100 - - 100 - - 100 - - 100 - -
P1 - 53 47 - 78 23 14 55 31 12 71 16 89 - 11 94 - 6 95 5 - 94 6 -
P2 - 100 - - 100 - 3 66 31 5 64 32 93 6 1 94 6 1 97 3 - 97 2 -
P3 - 71 29 - 73 27 2 83 15 11 81 9 99 1 - 99 1 - 99 1 - 99 1 -
P4 - 86 14 - 75 25 5 87 7 10 83 7 100 - - 100 - - 99 - - 99 1 -
P5 - 86 14 - 75 25 5 87 7 10 83 7 100 - - 100 - - 99 - - 99 1 -
P6 - 90 10 - 87 13 8 86 6 15 80 4 100 - - 100 - - 99 1 - 99 1 -
P7 1 92 8 - 95 5 6 87 7 7 88 5 98 2 - 100 - - 99 1 - 100 - -
P8 2 88 11 - 93 6 19 75 6 3 91 5 97 2 1 100 - - 98 2 1 100 - -
P9 - 83 17 32 63 5 10 85 5 46 50 4 78 10 12 100 - - 95 1 4 99 1 -
P10 57 42 2 - 95 5 75 22 2 64 35 1 79 19 1 94 6 - 66 26 8 99 1 -
C0 36 61 3 - 45 55 43 54 3 55 30 15 29 68 2 95 - 5 80 18 2 86 14 -
C1 34 66 - - 100 - 95 4 1 93 6 1 29 71 - 41 59 - 92 5 2 95 3 2
C2 - 69 31 - 68 32 42 37 21 53 33 13 90 10 - 82 18 - 92 8 - 80 20 -
C3 18 56 26 - 1 99 93 6 2 93 4 3 8 92 - - 100 - 97 1 2 96 3 2
C4 57 41 1 - 97 3 96 4 - 95 5 - 94 6 - 94 6 - 100 - - 99 1 -

this survival rate does not appear to increase (worse) for
SCA-aware diversification. This means that combining SCA
mitigations with diversification against CRAs does not re-
duce the mitigation capability of fine-grained diversification
against CRAs.

5. Discussion
This section discusses the application of SecDivCon

against more advanced attacks and the potential extension
of SecDivCon to support additional mitigations.
Whole-Program Mitigation: Our threat model consid-
ers static gadget-based code-reuse attacks, such as ROP
attacks [58]. SecDivCon proposes a fine-grained function-
level diversification approach as a mitigation against these
attacks. Combining the generated variants for each function
allows for whole-program diversification [64]. Return-into-
libc (RILC) [62] attacks where the gadgets correspond to en-
tire functions may be defeated by combining whole-program
diversification with function shuffling and/or coarse-grained
diversification approaches, such as Address Space Layout
Randomization (ASLR).
Advanced Attacks: Advanced code-reuse attacks, such as
Blind ROP (BROP) [7], may use a memory vulnerability
to read the program memory and find gadgets dynamically
in the diversified code. BROP attacks read the program
memory using a memory vulnerability and depend on the
reset of the system after a system crash. An efficient ap-
proach against BROP is re-randomization [60] that may
be performed at boot time [49]. Runtime re-randomization
switches program variants at runtime at an interval within
which the attacker should not be able to complete an attack.
The main drawbacks of re-randomization is that 1) it may

lead to highmemory footprint for the binary [15], whichmay
be forbidding in resource-constrained devices, and 2) it con-
tributes to additional performance overhead. Nonetheless,
SecDivCon performs fine-grained automatic diversification
that may be used in a re-randomization scheme, enabling
improved protection against advanced code-reuse attacks.

Apart from classical power analyses, such as DPA and
CPA, recently, the advancement of deep learning has al-
lowed more powerful attacks. Ngo et al. [43] show that
advanced randomization techniques, such as plaintext shuf-
fling, are vulnerable [43, 42], when the implementation leaks
secret values. They also show that first-order masking can
be defeated with deep-learning based analysis, however, the
masking property is preserved at the source-code level, thus
ROT or MRE leakages may be present after compilation [5].
We leave the evaluation of our approach against these attacks
as future work.
Implement Additional Mitigations: SecDivCon com-
bines code diversification and side-channel attack mitiga-
tions to protect embedded devices. However, additional mit-
igations may be necessary to protect a device against other
types of attacks. An essential step for combining different
mitigations is to determine whether these mitigations are
conflicting. In case they are, the designer may describe the
newmitigations as constraints to extend the constraint model
of SecDivCon. This allows SecDivCon to generate secure
code.

6. Related Work
This section presents the related work with regards to

Code-Reuse Attacks and Side-Channel Attacks. Table 8

Tsoupidi et al.: Preprint submitted to Elsevier Page 12 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

Table 8
Related work; CRA stands for code-reuse attacks; TSC stands
for timing side-channel attacks; MS stands for memory safety;
PSC stands for power side-channel attacks; IL stands for
interrupt-latency SCA; Div stands for diversification; Obf
stands for obfuscation; CFI stands for control-flow integrity;
CT stands for constant-time discipline; SM stands for software
masking; BB stands for basic-block balance; RR stands for re-
randomization; HWCFI stands for hardware-assisted CFI; PO
corresponds to the upper bound of the performance overhead;
SDC stands for SecDivCon.
Pub. Attack Mitigation PO Target
[28] CRA Div 25% x86
[48] CRA Div 0% x86
[17] TSC Div 8x x86
[52] TSC Obf 16x x86
[50] CRA Div, RR - AVR
[2] CRA CFI ∼80% ARM
[45] CRA CFI 5x ARM
[70] TSC, MS CT - C
[34] CRA Div, RR 7% x86
[55] CRA Div,CFI 70% ARM
[59] PSC SM 64% ARM
[68] TSC, IL BB 60% MSP430
[60] CRA Div, RR 6% ARM
[9] TSC CT 5x x86
[23] CRA HWCFI 24% ARM

SDC
TSC, PSC,

CRA Div, SM/BB 70%a Mips,
ARM

aDiversification overhead is controlled

shows a representative subset of compiler-based or binary-
rewrite contributions against CRAs and SCAs in the litera-
ture. For each of these works, Table 8 shows the publication
citation reference (Pub.), the attack it is mitigating (Attack),
the type of mitigation the publication is proposing (Mitiga-
tion), the maximum performance overhead the approach in-
troduces (PO), and the target language/architecture (Target).
6.1. Mitigations against Code-Reuse Attacks

In the literature, there are two main approaches against
CRAs, software diversification and CFI.

Automatic software diversity has been proposed as an
efficient mitigation against CRAs [35]. Many software di-
versification approaches target x86 systems [28, 48, 34],
while others target embedded systems [50, 55, 64, 60]. The
main characteristic of these approaches is that they lead
to relatively low performance overhead. For example, fine-
grained diversification approaches may lead to 0% perfor-
mance overhead [48, 64].

Re-randomization approaches [60, 50, 34] repeat the
randomization process in specific timing intervals to protect
against advanced CRAs, such as JIT-ROP [61], BROP,
and side-channel-based diversification deciphering [57].
These approachesmay introduce additional binary-size over-
head [15] and performance overhead. However, this perfor-
mance overhead is typically low, for example, HARM [60]
introduces up to 6% additional overhead.

CFImitigates CRAs by ensuring that the dynamic execu-
tion of the program adheres to the intended program control
flow [14]. Software-based CFI systems [2, 45, 55] typically
result in high overhead, whereas hardware-assisted methods
may lead to reduced overhead [23]. However, hardware-
assisted CFI approaches often depend on specialized hard-
ware mechanisms [14].

To summarize, there are multiple approaches to mitigate
CRAs, but none of them considers or evaluates the effect on
mitigations against SCAs. Comparing code diversification
and CFI approaches, the former typically lead to lower
overhead. This is the main motivation for selecting code
diversification as a mitigation against CRAs.
6.2. Code Hardening Against Side-Channel

Attacks
Software masking is a software approach to mitigate

PSCs. However, a compiler that translates a program to
machine code may introduce power leaks [67, 59, 46, 5].
Wang et al. [67] identify leaks in masked implementation
using a type-inference algorithm, and then, perform register-
allocation transformations to mitigate these leaks in LLVM.
Rosita [59] performs an iterative process to identify power
leakages in software implementations for ARM Cortex M0,
with a performance overhead of up to 64%. Our recent
approach [65] based on type inference [24] presents an
approach with execution overhead up to 13%. SecDivCon
adapts this approach to generate diverse code variants that
preserve software masking.

The constant-time programming discipline [41] is a
widely-used programming discipline that prevents TSC
attacks. It prohibits the use of secret values in branch de-
cisions, memory indexes, and variable-latency instructions
(such as division in many architectures). Borrello et al. [9]
linearize code to translate a program to a constant-time
equivalent including branches, loops, and memory accesses.
The main drawback of this approach is the introduction of
execution-time overhead of up to five times. The constant-
time programming discipline leads to secure code as it
ensures that there are no secret-dependent timing variations,
however it is restrictive because it does not allow secret-
dependent branches and makes the code difficult to read
and implement [44]. Barthe et al. [6] present CR pro-
gramming, an alternative, more relaxed form of constant-
time programming that allows branches on secret values as
long as the diverse execution paths take identical time to
execute. Similarly, Brown et al. [12] perform transforma-
tions to balance secret-dependent branches by balancing the
branch bodies at the C level. Winderix et al. [68] balance
secret-dependent branches with equivalent-latency NOPs to
mitigate TSC and Interrupt Latency Side-Channel Attacks.
The latter attacks distinguish which path of a branch the
program follows based on the latencies of the instructions
in each block. A different approach against timing attacks
is Raccoon [52], which uses control-flow obfuscation to
mitigate TSC attacks. However, Joshi et al. [31] has shown
that obfuscation may introduce code-reuse gadgets. Hence,

Tsoupidi et al.: Preprint submitted to Elsevier Page 13 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

Raccoon may increase the attack surface of CRAs. More-
over, this mitigation introduces an overhead of up to 16
times, which is prohibiting for resource-constraint devices.
Crane et al. [17] present a compiler-based diversification
approach that inserts timing noise to obfuscate cache-based
timing attacks on cryptographic algorithms. However, this
approach introduces a performance overhead of up to 8x,
which is higher than SecDivCon that introduces an overhead
of up to 70% for generating constant-resource programs.

Finally, HACL* by Zinzindohoué et al. [70] is a verified
cryptographic library that generates C code that is memory
safe and constant time. Although memory safety hinders
memory corruption vulnerabilities in the generated library,
HACL* does not prohibit memory vulnerabilities in the rest
of the code, which may enable CRAs. Thus, mitigations
against CRAs may still be necessary.

In summary, there are compiler-based and binary rewrit-
ing approaches to mitigate PSC attacks and TSC attacks,
however, none of these approaches are effective against
CRAs and/or considers the effect on CRAs.

7. Conclusion and Future Work
This paper presents SecDivCon – a constraint-based ap-

proach that is able to combine code diversification with side-
channel mitigations. It enables secure-by-design generation
of the optimised code for small predictable hardware archi-
tectures. Our evaluation shows that the introduction of SCA
mitigation-preserving constraints impacts the scalability of
diversification but it does not have a negative effect against
code-reuse attacks.

As a future work, we plan to investigate how to improve
SecDivCon’s scalability and extend the CR-preservingmodel
with additional transformations that allow the analysis of
secret-dependent branches that contain bounded loops.

Acknowledgment
Wewould like to thank JingboWang for the support with

their tool. We would also like to thank Andreas Lindner for
his support with verifying SecDivCon usingWCET analysis
forq ARM Cortex M0. In addition, we would like to thanks
Roberto Castañeda Lozano for his technical support on
Unison, SecDivCon’s underlying constraint-based compiler
backend. Finally, we would like to thank Nicolas Harrand,
Amir M. Ahmadian, and Javier Cabrera for their feedback
on this paper. P. Papadimitratos acknowledges the support
of the Swedish Science Foundation (VR) and the Knut and
Alice Wallenberg (KAW) Foundation that funded in parts
his work in this context

References
[1] Abera, T., Asokan, N., Davi, L., Ekberg, J.E., Nyman, T., Paverd, A.,

Sadeghi, A.R., Tsudik, G., 2016a. C-FLAT: Control-Flow Attestation
for Embedded Systems Software, in: Proceedings of the 2016 ACM
SIGSACConference on Computer and Communications Security, pp.
743–754. doi:10.1145/2976749.2978358.

[2] Abera, T., Asokan, N., Davi, L., Ekberg, J.E., Nyman, T., Paverd, A.,
Sadeghi, A.R., Tsudik, G., 2016b. C-FLAT: Control-FlowAttestation
for Embedded Systems Software, in: Proceedings of the 2016 ACM
SIGSACConference on Computer and Communications Security, pp.
743–754. doi:10.1145/2976749.2978358.

[3] Ahmed, S., Xiao, Y., Snow, K.Z., Tan, G., Monrose, F., Yao, D.D.,
2020. Methodologies for Quantifying (Re-)randomization Security
and Timing under JIT-ROP, in: Proceedings of the 2020 ACM
SIGSACConference on Computer and Communications Security, pp.
1803–1820.

[4] ARM, . Cortex-M0 - Technical Reference Manual. URL: https:
//developer.arm.com/documentation/ddi0432/c/. accessed: November
2022.

[5] Athanasiou, K., Wahl, T., Ding, A.A., Fei, Y., 2020. Automatic
detection and repair of transition-based leakage in software binaries,
in: Software Verification. Springer, pp. 50–67.

[6] Barthe, G., Blazy, S., Hutin, R., Pichardie, D., 2021. Secure Com-
pilation of Constant-Resource Programs, in: CSF 2021 - 34th IEEE
Computer Security Foundations Symposium, IEEE. pp. 1–12.

[7] Bittau, A., Belay, A.,Mashtizadeh, A.,Mazières, D., Boneh, D., 2014.
Hacking Blind, in: 2014 IEEE Symposium on Security and Privacy,
pp. 227–242. ISSN: 2375-1207.

[8] Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z., 2011. Jump-oriented
Programming: A New Class of Code-reuse Attack, in: Proceedings of
the 6th ACM Symposium on Information, Computer and Communi-
cations Security, ACM. pp. 30–40.

[9] Borrello, P., D’Elia, D.C., Querzoni, L., Giuffrida, C., 2021. Con-
stantine: Automatic Side-Channel Resistance Using Efficient Con-
trol and Data Flow Linearization. Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security ,
715–733doi:10.1145/3460120.3484583.

[10] Brier, E., Clavier, C., Olivier, F., 2004. Correlation Power Anal-
ysis with a Leakage Model, in: Cryptographic Hardware and Em-
bedded Systems - CHES 2004, Springer. pp. 16–29. doi:10.1007/
978-3-540-28632-5_2.

[11] Broman, D., 2017. A Brief Overview of the KTA WCET
Tool. doi:10.48550/arXiv.1712.05264. number: arXiv:1712.05264
arXiv:1712.05264 [cs].

[12] Brown, C., Barwell, A.D., Marquer, Y., Zendra, O., Richmond, T.,
Gu, C., 2022. Semi-automatic ladderisation: improving code security
through rewriting and dependent types, in: Proceedings of the 2022
ACM SIGPLAN International Workshop on Partial Evaluation and
Program Manipulation, pp. 14–27. doi:10.1145/3498886.3502202.

[13] Brumley, B.B., Tuveri, N., 2011. Remote Timing Attacks Are
Still Practical, in: Atluri, V., Diaz, C. (Eds.), Computer Secu-
rity – ESORICS 2011, Springer. pp. 355–371. doi:10.1007/
978-3-642-23822-2_20.

[14] Burow, N., Carr, S.A., Nash, J., Larsen, P., Franz, M., Brunthaler,
S., Payer, M., 2017. Control-Flow Integrity: Precision, Security, and
Performance. ACMComputing Surveys 50, 16:1–16:33. doi:10.1145/
3054924.

[15] Cabrera Arteaga, J., Laperdrix, P., Monperrus, M., Baudry, B., 2022.
Multi-variant Execution at the Edge, in: Proceedings of the 9th ACM
Workshop on Moving Target Defense, pp. 11–22.

[16] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham,
H., Winandy, M., 2010. Return-oriented Programming Without
Returns, in: Proceedings of the 17th ACM Conference on Computer
and Communications Security, ACM. pp. 559–572.

[17] Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M., 2015a.
Thwarting Cache Side-Channel Attacks Through Dynamic Software
Diversity, in: Proceedings 2015 Network and Distributed System
Security Symposium, Internet Society. doi:10.14722/ndss.2015.23264.

[18] Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi,
A., Brunthaler, S., Franz, M., 2015b. Readactor: Practical Code
Randomization Resilient to Memory Disclosure, in: 2015 IEEE Sym-
posium on Security and Privacy, pp. 763–780. doi:10.1109/SP.2015.
52.

Tsoupidi et al.: Preprint submitted to Elsevier Page 14 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

[19] Deogirikar, J., Vidhate, A., 2017. Security attacks in iot: A survey,
in: 2017 International Conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud)(I-SMAC), IEEE. pp. 32–37.

[20] Devi, M., Majumder, A., 2021. Side-Channel Attack in Internet
of Things: A Survey, in: Mandal, J.K., Mukhopadhyay, S., Roy, A.
(Eds.), Applications of Internet of Things, Springer. pp. 213–222.
doi:10.1007/978-981-15-6198-6_20.

[21] D’Silva, V., Payer, M., Song, D., 2015. The Correctness-Security
Gap in Compiler Optimization, in: 2015 IEEE Security and Privacy
Workshops, pp. 73–87. doi:10.1109/SPW.2015.33.

[22] Foundation, L., . Tool interface standard (tis) portable formats
specification version 1.1. URL: https://refspecs.linuxfoundation.
org/elf/TIS1.1.pdf. accessed February 2023.

[23] Fu, A., Ding, W., Kuang, B., Li, Q., Susilo, W., Zhang, Y., 2022. FH-
CFI: Fine-grained hardware-assisted control flow integrity for ARM-
based IoT devices. Computers & Security 116, 102666. doi:10.1016/
j.cose.2022.102666.

[24] Gao, P., Zhang, J., Song, F., Wang, C., 2019. Verifying and Quanti-
fying Side-channel Resistance of Masked Software Implementations.
ACM Transactions on Software Engineering and Methodology 28,
16:1–16:32. doi:10.1145/3330392.

[25] Gecode Team, 2022. Gecode: Generic constraint development envi-
ronment. URL: https://www.gecode.org.

[26] Gilles, O., Viguier, F., Kosmatov, N., Pérez, D.G., 2022. Control-
flow integrity at risc: Attacking risc-v by jump-oriented program-
ming. URL: https://arxiv.org/abs/2211.16212, doi:10.48550/ARXIV.
2211.16212.

[27] Hebrard, E., O’Sullivan, B., Walsh, T., 2007. Distance Constraints in
Constraint Satisfaction, in: International Joint Conference on Artifi-
cial Intelligence - IJCAI 2007, p. 6.

[28] Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., Franz, M., 2013.
Profile-guided Automated Software Diversity, in: Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), IEEE Computer Society. pp. 1–11. doi:10.1109/
CGO.2013.6494997.

[29] Ingmar, L., Garcia de la Banda, M., Stuckey, P.J., Tack, G., 2020.
Modelling diversity of solutions, in: Proceedings of the thirty-fourth
AAAI conference on artificial intelligence.

[30] Jaloyan, G.A., Markantonakis, K., Akram, R.N., Robin, D., Mayes,
K., Naccache, D., 2020. Return-Oriented Programming on RISC-
V, in: Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, pp. 471–480. doi:10.1145/3320269.
3384738.

[31] Joshi, H.P., Dhanasekaran, A., Dutta, R., 2015. Trading off a vul-
nerability: does software obfuscation increase the risk of rop attacks.
Journal of Cyber Security and Mobility , 305–324.

[32] Kocher, P., Jaffe, J., Jun, B., 1999. Differential Power Analysis, in:
Advances in Cryptology — CRYPTO’ 99, Springer. pp. 388–397.
doi:10.1007/3-540-48405-1_25.

[33] Kocher, P.C., 1996. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems, in: Advances in Cryptology
—CRYPTO ’96, Springer. pp. 104–113. doi:10.1007/3-540-68697-5_
9.

[34] Koo, H., Chen, Y., Lu, L., Kemerlis, V.P., Polychronakis, M., 2018.
Compiler-Assisted Code Randomization, in: 2018 IEEE Symposium
on Security and Privacy (SP), pp. 461–477.

[35] Larsen, P., Homescu, A., Brunthaler, S., Franz, M., 2014. SoK: Au-
tomated Software Diversity, in: 2014 IEEE Symposium on Security
and Privacy, pp. 276–291. doi:10.1109/SP.2014.25.

[36] Lindner, A., Guanciale, R., Dam, M., 2023. Proof-producing sym-
bolic execution for binary code verification. arXiv:2304.08848.

[37] Castañeda Lozano, R., Carlsson,M., Blindell, G.H., Schulte, C., 2019.
Combinatorial Register Allocation and Instruction Scheduling. ACM
Trans. Program. Lang. Syst. 41, 17:1–17:53. doi:10.1145/3332373.

[38] Castañeda Lozano, R., Schulte, C., 2019. Survey on Combinatorial
Register Allocation and Instruction Scheduling. ACM Computing
Surveys 52, 62:1–62:50. doi:10.1145/3200920.

[39] Mantel, H., Starostin, A., 2015. Transforming Out Timing Leaks,
More or Less, in: Computer Security – ESORICS 2015, Springer In-
ternational Publishing. pp. 447–467. doi:10.1007/978-3-319-24174-6_
23.

[40] Messerges, T.S., Dabbish, E.A., Sloan, R.H., 1999. Investigations of
power analysis attacks on smartcards. Smartcard 99, 151–161.

[41] Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.A., 2005. The
program counter security model: Automatic detection and removal of
control-flow side channel attacks, in: Information Security and Cryp-
tology - ICISC 2005, 8th International Conference, Seoul, Korea,
December 1-2, 2005, Revised Selected Papers, pp. 156–168.

[42] Ngo, K., Dubrova, E., Guo, Q., Johansson, T., 2021a. A Side-Channel
Attack on a Masked IND-CCA Secure Saber KEM Implementation.
IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems , 676–707doi:10.46586/tches.v2021.i4.676-707.

[43] Ngo, K., Dubrova, E., Johansson, T., 2021b. Breaking Masked and
Shuffled CCA Secure Saber KEM by Power Analysis, in: Proceedings
of the 5th Workshop on Attacks and Solutions in Hardware Security,
pp. 51–61.

[44] Ngo, V.C., Dehesa-Azuara, M., Fredrikson, M., Hoffmann, J., 2017.
Verifying and Synthesizing Constant-Resource Implementations with
Types, in: 2017 IEEE Symposium on Security and Privacy (SP), pp.
710–728. doi:10.1109/SP.2017.53. iSSN: 2375-1207.

[45] Nyman, T., Ekberg, J.E., Davi, L., Asokan, N., 2017. CFI CaRE:
Hardware-Supported Call and Return Enforcement for Commercial
Microcontrollers, in: Dacier, M., Bailey, M., Polychronakis, M., An-
tonakakis, M. (Eds.), Research in Attacks, Intrusions, and Defenses,
Springer International Publishing. pp. 259–284.

[46] Papagiannopoulos, K., Veshchikov, N., 2017. Mind the Gap: Towards
Secure 1st-Order Masking in Software, in: InternationalWorkshop on
Constructive Side-Channel Analysis and Secure Design, Springer. pp.
282–297.

[47] Papp, D., Ma, Z., Buttyan, L., 2015. Embedded systems security:
Threats, vulnerabilities, and attack taxonomy, in: 2015 13th Annual
Conference on Privacy, Security and Trust (PST), pp. 145–152.
doi:10.1109/PST.2015.7232966.

[48] Pappas, V., Polychronakis, M., Keromytis, A.D., 2012. Smashing the
Gadgets: Hindering Return-Oriented Programming Using In-place
Code Randomization, in: 2012 IEEE Symposium on Security and
Privacy, pp. 601–615. doi:10.1109/SP.2012.41. iSSN: 1081-6011.

[49] Pastrana, S., Tapiador, J., Suarez-Tangil, G., Peris-López, P., 2016a.
AVRAND: A Software-Based Defense Against Code Reuse Attacks
for AVREmbeddedDevices, in: Detection of Intrusions andMalware,
and Vulnerability Assessment. Springer International Publishing. vol-
ume 9721, pp. 58–77. doi:10.1007/978-3-319-40667-1_4. series Title:
Lecture Notes in Computer Science.

[50] Pastrana, S., Tapiador, J., Suarez-Tangil, G., Peris-López, P., 2016b.
AVRAND: A Software-Based Defense Against Code Reuse At-
tacks for AVR Embedded Devices, in: Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 58–77. doi:10.1007/
978-3-319-40667-1_4.

[51] Randolph, M., Diehl,W., 2020. Power Side-Channel Attack Analysis:
A Review of 20 Years of Study for the Layman. Cryptography
4, 15. URL: https://www.mdpi.com/2410-387X/4/2/15, doi:10.3390/
cryptography4020015. number: 2 Publisher: Multidisciplinary Digital
Publishing Institute.

[52] Rane, A., Lin, C., Tiwari, M., 2015. Raccoon: Closing Digital {Side-
Channels} through Obfuscated Execution, in: 26th USENIX Security
Symposium (USENIX Security 15), pp. 431–446.

[53] Roemer, R., Buchanan, E., Shacham, H., Savage, S., 2012. Return-
Oriented Programming: Systems, Languages, and Applications.
ACMTransactions on Information and System Security 15, 2:1–2:34.
doi:10.1145/2133375.2133377.

[54] Rossi, F., Van Beek, P., Walsh, T., 2006. Handbook of constraint
programming. Elsevier.

[55] Salehi, M., Hughes, D., Crispo, B., 2019. MicroGuard: Securing
Bare-Metal Microcontrollers against Code-Reuse Attacks, in: 2019
IEEE Conference on Dependable and Secure Computing (DSC), pp.

Tsoupidi et al.: Preprint submitted to Elsevier Page 15 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

1–8. doi:10.1109/DSC47296.2019.8937667.
[56] Salwan, J., 2020. ROPgadget Tool. URL: http://shell-storm.org/

project/ROPgadget/.
[57] Seibert, J., Okhravi, H., Söderström, E., 2014. Information Leaks

Without Memory Disclosures: Remote Side Channel Attacks on
Diversified Code, in: Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 54–65.

[58] Shacham, H., 2007. The Geometry of Innocent Flesh on the Bone:
Return-into-libcWithout Function Calls (on the x86), in: Proceedings
of the 14th ACM Conference on Computer and Communications
Security, ACM. pp. 552–561.

[59] Shelton, M.A., Samwel, N., Batina, L., Regazzoni, F., Wagner, M.,
Yarom, Y., 2021. Rosita: Towards Automatic Elimination of Power-
Analysis Leakage in Ciphers. Proceedings 2021 Network and Dis-
tributed System Security Symposium doi:10.14722/ndss.2021.23137.
appears in NDSS 2022.

[60] Shi, J., Guan, L., Li, W., Zhang, D., Chen, P., Chen, P., 2022. HARM:
Hardware-assisted continuous re-randomization for microcontrollers,
in: 2022 IEEE european symposium on security and privacy (EuroS
P).

[61] Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C.,
Sadeghi, A., 2013. Just-In-Time Code Reuse: On the Effectiveness of
Fine-Grained Address Space Layout Randomization, in: 2013 IEEE
Symposium on Security and Privacy, pp. 574–588.

[62] Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.,
2011. On the Expressiveness of Return-into-libc Attacks, in: Sommer,
R., Balzarotti, D., Maier, G. (Eds.), Recent Advances in Intrusion
Detection, Springer. pp. 121–141.

[63] Tsoupidi, R.M., 2017. Two-phase WCET analysis for cache-based
symmetric multiprocessor systems. Master’s thesis. Royal Institute
of Technology KTH.

[64] Tsoupidi, R.M., Castañeda Lozano, R., Baudry, B., 2021. Constraint-
based diversification of jop gadgets. Journal of Artificial Intelligence
Research 72, 1471–1505.

[65] Tsoupidi, R.M., Castañeda Lozano, R., Troubitsyna, E., Papadimi-
tratos, P., 2023. Securing optimized code against power side channels,
in: CSF 2023 - 36th IEEE Computer Security Foundations Sympo-
sium, IEEE. To appear.

[66] Vu, S.T., Cohen, A., De Grandmaison, A., Guillon, C., Heydemann,
K., 2021. Reconciling optimization with secure compilation. Pro-
ceedings of the ACM on Programming Languages 5, 1–30.

[67] Wang, J., Sung, C., Wang, C., 2019. Mitigating power side channels
during compilation, in: Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, pp. 590–601.
doi:10.1145/3338906.3338913.

[68] Winderix, H., Mühlberg, J.T., Piessens, F., 2021. Compiler-Assisted
Hardening of Embedded Software Against Interrupt Latency Side-
Channel Attacks, in: 2021 IEEE European Symposium on Security
and Privacy (EuroS P), pp. 667–682. doi:10.1109/EuroSP51992.2021.
00050.

[69] Xu, R., Zhu, L., Wang, A., Du, X., Choo, K.K.R., Zhang, G., Gai, K.,
2018. Side-Channel Attack on a Protected RFID Card. IEEE Access
6, 58395–58404. doi:10.1109/ACCESS.2018.2870663. conferenceName:
IEEE Access.

[70] Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.,
2017. HACL*: A Verified Modern Cryptographic Library, in: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1789–1806.

A. Path-Finding Algorithm
When the branch condition has type secret, i.e. depends

on a secret value, SecDivCon performs an analysis to dis-
cover all paths starting from the branch condition (source)
to a common node (sink). We assume that the program is
split into basic blocks, pieces of code with at most one

1 GET_PATHS(n, BCFG):

2 t.empty () # Queue - First path

3 P.empty () # Priority queue - Paths

4 t.insert(n)

5 P.insert(t)

6 W.empty () # final paths

7 while (¬P.isempty () and ¬P.hasCycle ()):
8 p ← P.top() # Top path

9 h ← p.pop() # Last element of path

10 succ ← BCFG.successors(h)

11 if (succ = ∅): # exit node

12 W.push(p)

13 P.remove(p)

14 elif (succ = {s}):

15 p.push(s)

16 P.replace(p)

17 # if this is a sink , we terminate

18 if (W.extend(P). hasSink ()):

19 return W.extend(P)

20 elif (succ = {s1,s2}):

21 p1 ← p.copy()

22 p2 ← p.copy()

23 p1.push(s1)

24 p2.push(s2)

25 P.remove(p)

26 P.insert(p1)

27 P.insert(p2)

28 return W

Figure 8: Path extraction

branch (apart from function calls) at the end of the block.
To identify all possible paths, we generate the Control-Flow
Graph (CFG) between the basic blocks of the program.

Figure 8 shows the algorithm for extracting the paths
that start from a basic block n (the secret-dependent branch),
given the CFG (BCFG). We use two data structures, a priority
queue, P, which contains all paths under analysis, and a
queue, t that represents the current path and starts with the
first basic block, n (line 4). The priority queue uses the block
order as the priority, with smaller numbers having priority.
At line 5, P is initialized with t. We store the final results in
W (line 6). At line 7, we start a loop that terminates when
there are no paths left to analyze in P or when we find a
cycle. At lines 8 and 9, we get the top element of the top path
from P. Subsequently, the algorithm finds all successor nodes
in the CFG, which correspond to possible basic blocks that
follow the current basic block (line 10). Then, the algorithm
performs different actions depending on the successor nodes.
First, if the current node, h does not have any successors, it
means that h is an exit node, thus, h is the last node in the
current path. Lines 12 and 13 add the path to W and remove it
from the paths under analysis. If h has one successor, s, then
we push the successor to the path and update P (lines 14-16).
Here, we need to check if the new node leads to the current
paths having a sink, i.e. the same final node (line 17). The
last case is when the branch is conditional and there are two
possible destinations. Here, we need to generate two paths p1

Tsoupidi et al.: Preprint submitted to Elsevier Page 16 of 16



Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

and p2 for each of the two destinations and insert them to P

for further analysis (lines 20-27). When the analysis finishes
and the algorithm exits the loop, then it returns W.

This analysis does not support loops.

Tsoupidi et al.: Preprint submitted to Elsevier Page 17 of 16


	Contents
	Thesis
	Introduction
	Thesis Statement
	Research Questions
	Contributions
	Sustainability and Ethics
	Publications
	Outline

	Background
	Cybersecurity Threats and Mitigations
	Constraint Programming
	Compiler Backend

	Approach and Methodology
	Secure-by-Design Optimization (SecOpt)
	Methodology

	Related Work
	Code-Reuse Attacks Mitigations
	Defending Side-Channel Attacks
	Secure Compilation and Optimization

	Summary of Publications
	Publication 1: Constraint-Based Software Diversification for Efficient Mitigation of Code-Reuse Attacks
	Publication 2: Constraint-Based Diversification of JOP Gadgets
	Publication 3: Vivienne: Relational Verification of Cryptographic Implementations in WebAssembly
	Publication 4: Securing Optimized Code Against Power Side Channels
	Publication 5: Thwarting Code-Reuse and Side-Channel Attacks in Embedded Systems

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	References

	Included Publications
	Publication 1
	Publication 2
	Publication 3
	Publication 4
	Publication 5


