
IN DEGREE PROJECT INFORMATION AND COMMUNICATION
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2017

Two-phase WCET analysis for
cache-based symmetric
multiprocessor systems

RODOTHEA MYRSINI TSOUPIDI

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Two-phase WCET analysis for cache-based
symmetric multiprocessor systems

Master’s Thesis Project

RODOTHEA-MYRSINI TSOUPIDI

Master’s Thesis at KTH Information and Communication Technology
Supervisor: David Broman

Examiner: Christian Schulte

TRITA-ICT-EX-2017:207

Abstract
The estimation of the worst-case execution time (WCET) of a
task is a problem that concerns the field of embedded systems
and, especially, real-time systems. Estimating a safe WCET for
single-core architectures without speculative mechanisms is a
challenging task and an active research topic. However, the
advent of advanced hardware mechanisms, which often lack
predictability, complicates the currentWCET analysis methods.
The field of Embedded Systems has high safety considerations
and is, therefore, conservative with speculative mechanisms.
However, nowadays, even safety-critical applications move to
the direction of multiprocessor systems. In a multiprocessor
system, each task that runs on a processing unit might affect
the execution time of the tasks running on different processing
units. In shared-memory symmetric multiprocessor systems,
this interference occurs through the shared memory and the
common bus. The presence of private caches introduces cache-
coherence issues that result in further dependencies between
the tasks.
The purpose of this thesis is twofold: (1) to evaluate the feasibil-
ity of an existing one-passWCET analysis method with an inte-
grated cache analysis and (2) to design and implement a cache-
based multiprocessor WCET analysis by extending the single-
core method. The single-core analysis is part of the KTH’s Tim-
ing Analysis (KTA) tool. The WCET analysis of KTA uses Ab-
stract Search-based WCET Analysis, an one-pass technique that
is based on abstract interpretation. The evaluation of the fea-
sibility of this analysis includes the integration of microarchi-
tecture features, such as cache and pipeline, into KTA. These
features are necessary for extending the analysis for hardware
models of modern embedded systems. Themultiprocessor anal-
ysis of this work uses the single-core analysis in two stages
to estimate the WCET of a task running under the presence
of temporally and spatially interfering tasks. The first phase
records the memory accesses of all the temporally interfering
tasks, and the second phase uses this information to perform
the multiprocessor WCET analysis. The multiprocessor analy-
sis assumes the presence of private caches and a shared com-
munication bus and implements the MESI protocol to maintain
cache coherence.

Keywords: Worst-Case Execution Time Analysis, Abstract Do-
main, Real-Time Systems, Low-level Analysis, Pipeline Analy-
sis, Cache-based Analysis, Multiprocessor Analysis

Sammanfattning
Tvåsteg WCET-analys för cache-baserade

symmetriska multiprocessorsystem

Uppskattning av längsta exekveringstid (eng. worst-case exe-
cution time eller WCET) är ett problem som angår inbyggda
system och i synnerhet realtidssystem. Att uppskatta en säker
WCET för enkelkärniga system utan spekulativa mekanismer
är en utmanande uppgift och ett aktuellt forskningsämne. Till-
komsten av avancerade hårdvarumekanismer, som ofta saknar
förutsägbarhet, komplicerar ytterligare de nuvarande analys-
metoderna för WCET. Inom fältet för inbyggda system ställs
höga säkerhetskrav. Således antas en konservativ inställning till
nya spekulativa mekanismer. Trotts detta går säkerhetskritiska
systemmer ochmer i riktningmotmultiprocessorsystem. Imul-
tiprocessorsystempåverkas en process som exekveras på en pro-
cessorenhet av processer som exekveras på andra processor-
enheter. I symmetriska multiprocessorsystem med delade min-
nen påträffas denna interferens i det delade minnet och den
gemensamma bussen. Privata minnen introducerar cache-ko-
herens problem som resulterar i ytterligare beroende mellan
processerna.
Syftet med detta examensarbete är tvåfaldigt: (1) att utvärdera
en befintlig analysmetod för WCET efter integrering av en låg-
nivå analys och (2) att designa och implementera en cache-ba-
serad flerkärnig WCET-analys genom att utvidga denna enkel-
kärniga metod. Den enkelkärniga metoden är implementerad i
KTH’s Timing Analysis (KTA), ett verktyg för tidsanalys. KTA
genomför en så-kallad Abstrakt Sök-baserad Metod som är ba-
serad påAbstrakt Interpretation. Utvärderingen av denna analys
innefattar integrering av mikroarkitektur mekanismer, såsom
cache-minne och pipeline, i KTA. Dessamekanismer är nödvän-
diga för att utvidga analysen till att omfatta de hårdvarumodel-
ler som används idag inom fältet för inbyggda system. Den fler-
kärniga WCET-analysen genomförs i två steg och uppskattar
WCET av en process som körs i närvaron av olika tids och rums-
ligt störande processer. Första steget registrerar minnesåtkomst
för alla tids störande processer, medans andra steget använder
sig av första stegets information för att utföra den flerkärniga
WCET-analysen. Den flerkärniga analysen förutsätter ett sy-
stem med privata cache-minnen och en gemensamm buss som
implementerar MESI protokolen för att upprätthålla cache-ko-
herens.

Nyckelord: Längsta Exekveringstid Analys, WCET, Abstrakt
Domän, Realtidsystem, Låg-nivåAnalys, PipelineAnalys, Cache-
baserad Analys

Contents

1 Introduction 1
1.1 Problem Area . 2
1.2 Problem . 4
1.3 Approach . 5
1.4 Purpose . 5
1.5 Ethics and Sustainability . 6
1.6 Verification and Evaluation . 6
1.7 Contribution . 7
1.8 Outline . 7

2 Related Work 9
2.1 Static WCET Analysis . 9
2.2 Abstract Domains . 10
2.3 Low-level Analysis . 12
2.4 Multiprocessor WCET Analysis . 13

3 Background 15
3.1 The KTA Tool . 15

3.1.1 KTA Methodology . 16
3.1.2 KTA Implementation . 17

3.2 Abstract Interpretation . 19
3.2.1 Definitions . 19
3.2.2 Collecting Semantics . 20
3.2.3 Galois Connection - Galois Insertion 21
3.2.4 Abstract Semantics . 22

3.3 Abstract Execution . 22
3.4 Abstract Value Domains . 23

3.4.1 Interval Domain . 24
3.4.2 Congruence Domain . 24

3.5 Cache Coherence in Multiprocessor Systems 25
3.5.1 Basic Cache Notation . 27
3.5.2 Cache-Coherence Problem . 27
3.5.3 MESI Protocol . 27

4 Approach 31
4.1 Abstract Value Domain . 31

4.1.1 Interval-Congruence Domain Definition 32
4.1.2 MIPS Operations . 33
4.1.3 Motivation for the IC domain . 34

4.2 Cache abstract state . 36
4.2.1 Semantics . 37
4.2.2 Update . 38
4.2.3 Join . 40
4.2.4 Execution Time . 41

4.3 Cache Hierarchy abstract state . 42
4.3.1 Semantics . 42
4.3.2 Update . 42
4.3.3 Join . 43
4.3.4 Execution Time . 43

4.4 Pipeline abstract state . 43
4.4.1 Pipeline Definition . 43
4.4.2 Pipeline Abstract Semantics . 45
4.4.3 Update . 46
4.4.4 Join . 47
4.4.5 Execution Time . 47

4.5 Multiprocessor Analysis . 47
4.5.1 Methodology . 48
4.5.2 Semantics . 50
4.5.3 Cache Hierarchy . 51
4.5.4 Execution Time . 52

4.6 Limitations . 52

5 Implementation 55
5.1 Implementation . 55

5.1.1 Single-Core Analysis . 55
5.1.2 IC Abstract Domain . 56
5.1.3 Cache State . 57
5.1.4 Cache Hierarchy State . 58
5.1.5 Pipeline State . 59
5.1.6 Multiprocessor Analysis . 59

6 Evaluation 61
6.1 General Experimental Setup . 61

6.1.1 Benchmarks . 62
6.1.2 Execution on hardware . 62
6.1.3 Analysis Termination Methods . 63
6.1.4 Measuring Time . 64

6.2 Expressiveness Evaluation . 65

6.2.1 IC Domain - Interval Domain . 66
6.2.2 Tool Expressiveness Comparison 69
6.2.3 Experiment . 73
6.2.4 Results and Discussion . 73

6.3 Single-core Cache-based Analysis Evaluation 76
6.3.1 Analysis Time Overhead . 76
6.3.2 Hardware-based Evaluation . 79

6.4 Multi-core Cache-based Analysis Evaluation 83
6.4.1 Experimental Setup . 84
6.4.2 Results and Discussion . 88

7 Conclusion and Future Work 93
7.1 Conclusion . 93

7.1.1 Feasibility of KTA . 93
7.1.2 Multiprocessor analysis . 94

7.2 Future Work . 94
7.2.1 Implementation . 94
7.2.2 Future Research . 95

Appendices 95

A CPS code 97

B Mälardalen Benchmarks 99

Bibliography 101

Chapter 1

Introduction

This thesis concerns the problem of estimating the worst-case execution time (WCET) of
a task running on a symmetric multiprocessor (SMP) system with private caches. That is,
the longest time a task may run in the presence of temporally and spatially interfering
tasks. The estimation of the WCET is necessary for applications where the correctness of
the program depends on time, for example real-time applications.
The WCET problem is an active research topic with many challenges [51]. The WCET
of a task depends on the machine state, i.e. the state of the hardware system, and the
inputs to the task. Measuring or calculating the execution time for all possible inputs and
machine states is not possible in the general case [51]. For this reason, many approaches
attempt to estimate the WCET of a task. There are mainly two approaches for the WCET
problem: static and dynamic. Dynamic approaches execute a set of instances directly on
the hardware or on a simulator and extract the longest of all tested executions. This result
under-estimates the WCET because it is by definition not possible to measure an execu-
tion time that is larger than the actual WCET. Static approaches intend to estimate the
WCET for all possible inputs and extract an upper bound. Due to the high complexity
of considering all paths separately, static approaches use approximations that are based
on the program semantics. The result of the static approaches is an over-approximation
of the actual WCET because the analysis makes sound approximation of the program se-
mantics. Figure 1.1 illustrates theWCET problem and the possible approaches to estimate
the WCET of a task.
The complexity of theWCET analysis depends both on the source code, and the underlying
hardware architecture. The field of computer architecture focusesmostly on performance-
oriented microarchitecture features that are often difficult to analyze (e.g. cache memories
and parallelism) [29]. However, analyzability is an important feature for embedded-sys-
tem applications. For this reason, different analyses attempt to include microarchitecture
features. Many of the analysis techniques extend previous methodologies to analyze low-
level mechanisms, such as pipeline and caches [15, 37]. Multiprocessing introduces even
more challenges, due to the unexpected behavior and interference of independent simul-
taneous tasks that affect the state of the system.

1

CHAPTER 1. INTRODUCTION

0 2 4 6 8 10 12
Execution time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
D

is
tr

ib
ut

io
n

of
 e

xe
cu

tio
n

tim
e Exec. time for different inputs

Estimated
BCET

Measured
BCET

BCET
Measured

WCET

WCET

Estimated
WCET

Estimated exec. time for different inputs

Measured exec. time for different inputs

Figure 1.1: Safeness and tightness for different WCET estimation techniques. Tightness refers to
the distance between the actual WCET and the over-approximated value. A safeWCET estimation
guarantees that the estimated WCET is greater or equal to the actual WCET. Measurement-based
techniques give an unsafeWCET because the estimated value for theWCET is always less or equal
to the actual WCET. On the contrary, static program analysis provides a safe but over-approxi-
mated WCET. The tightness of the resulting WCET is a measure that may be used to evaluate the
method. BCET refers to the best case execution time and is the lower bound of the execution-time
graph.

The following sections provide an overview of the thesis, by presenting the problem area,
the purpose, the methodology, and the contributions of this thesis. More specifically,
Section 1.1 provides an overview of the problem area with regards to embedded systems
and WCET estimation. Section 1.2 presents the problems and the research question of
the thesis. Section 1.3 describes briefly the approach, and Section ⁇ the delimitations of
the approach. Next, Section 1.4 describes the purpose and goals with this thesis. Section
1.5 describes the benefits, the ethical issues, and sustainability of the results of the thesis.
Section 1.6 describes the Evaluation of the approach. Section 1.7 presents the contribu-
tions of this thesis and Section 4.6 presents the limitations of the implementation of the
approach. Finally, Section 1.8 gives an outline of the whole thesis report.

1.1 Problem Area

WCET estimation is a concept concerning different fields, but is especially important for
real-time systems, i.e., systems that are subject to time constraints. These time constraints
(or deadlines) are time limits, within which the system should respond to real-time events
[35]. The strictness of the timing constraints classifies real-time systems into three cat-
egories: soft, firm, and hard real-time systems. In soft and firm real-time systems, the

2

1.1. PROBLEM AREA

execution of a task and the result may be useful even after the deadline. In these cases,
violating the deadline does not have disastrous consequences to the system or the environ-
ment. On the other hand, the deadlines of hard real-time systems are very strict, because
a deadline violation may have severe consequences, such as environmental disaster or
human loss. Such systems are usually safety critical, for example cars and airplanes.
A method to guarantee that all critical tasks meet their deadlines is to perform a schedula-
bility analysis. The schedulability analysis requires as inputs, a scheduling algorithm and
theWCET of the task(s) of the system. Then, this analysis attempts to prove the feasibility
of the system using the specified scheduling algorithm. For this reason, there is a need
for calculating upper (and lower) bounds of the execution time.
The WCET problem is undecidable in the general case because it is equivalent to the halt-
ing problem1. However, different techniques and algorithms can analyze common real-
time applications. Such applications use simpler software structures that allow the im-
plementation of efficient WCET analysis tools. These tools attempt to calculate the actual
WCET or more often to give a safe and tight estimation. Safe, in a sense that the estimated
value does not underestimate the actual WCET and tight, so that the estimated value will
be as near to the actual value as possible (see Figure 1.1). The two main approaches for
estimating the WCET are dynamic and static. The following paragraphs describe these
two approaches.

Measurement Techniques
Measurement techniques are common methods for estimating the WCET of a program
[51]. The estimation of the WCET depends on a series of executions of the program for
different input values. That way, the resultingWCET is the maximum observed execution
time. This technique can, however, not guarantee a safe bound for the WCET because
the observed execution time can never be higher than the actual WCET (see Figure 1.1).
Therefore, measurement methods cannot provide safeness guarantees for the WCET of
hard real-time systems.
Measurement techniques are able to analyze soft and firm real-time systems because the
deadlines of these systems are not very strict. In addition to that, measurement techniques
often analyze hard real-time systems using extensive testing in combination with static
analysis. Also, measurement approaches may be applied to new processors and architec-
tures, before accurate static analysis tools for the new hardware are available [30].

Static Analysis
In hard real-time systems, safety critical tasks should always meet their deadlines. Mea-
surement techniques cannot guarantee a safe WCET because the result usually relies on

1 The halting problem is the problem of determining whether a program, given its input, halts [45]. If
we assume that there is a solution to the WCET problem and the resulting WCET would correspond to the
actual WCET or infinity in case the program is in infinite loop, then the halting problem could also be solved
because it can be reduced to the WCET problem, i.e. if WCET(p) is less than infinity, then program p halts,
otherwise it does not halt [39]. However, the halting problem has been proved to be undecidable [45].

3

CHAPTER 1. INTRODUCTION

a subset of all the possible input values. Instead, static approaches are able to provide
formal guarantees for a safe WCET that does not underestimate the actual WCET (See
Figure 1.1).
Static analysis techniques usually provide a safe bound for a wide range of real-time ap-
plications [14]. Many of these techniques are based on abstract interpretation [9], a static
analysis framework that provides correctness guarantees. Thesemethods aim at providing
a safe over-approximation of the WCET based on the program semantics. Static analysis
abstracts the program semantics to provides an over-approximation of the WCET. Due
to the complexity of the WCET analysis, many approaches make assumptions that may
restrict the expressiveness of the method, such as assuming the absence of side-effects,
e.g. exceptions.
However, static analysis is able to provide a guarantee that the actual WCET of the task
will not exceed the calculated WCET. The ability to provide a safe result makes static
analysis techniques suitable to hard real-time applications.

1.2 Problem

The estimation of the WCET is a challenging problem. Up to the present, there is no
general solution to the WCET problem, and different approaches attempt to improve the
resulting upper bound (tightness), generalize the current methodologies for a wider range
of applications and hardware architectures, or develop new techniques for estimating the
WCET. WCET analysis for single-core architectures without speculative features is an
active research topic [51] with challenges due to complexity of the WCET problem. In-
tegrating performance-oriented microarchitecture features, such as caches and multipro-
cessing, which are not predictable in the general case, increases the complexity of the
WCET analysis [38, 47]. A common method for dealing with new microarchitecture fea-
tures is by extending the previous WCET methodologies to support these feature or to
support some special analyzable cases [4, 15, 31].
The first objective of this thesis is to design and implement a multi-core WCET analysis
by extending an existing one-pass single-core WCET analysis method. In addition to this,
the thesis examines the expressiveness of the single-core method and implements a low-
level analysis that includes a cache, cache hierarchy, and pipeline analysis. This aims at
evaluating the feasibility of the one-pass single-core method with an integrated low-level
analysis.
To sum up, the main question of this project can be formulated in the following way:

Is an one-pass automatic single-core WCET estimation strategy with inte-
grated microarchitecture features, such as cache and pipeline, feasible? How
can the one-pass single-core analysis be extended for shared-memory multi-
processor systems?

4

1.3. APPROACH

1.3 Approach

The continuous development of new hardware mechanisms introduces new challenges to
the WCET analysis methods. To deal with the new development, different approaches
extend previous methods or develop new methods that deal with the problem from a dif-
ferent perspective. The first part of this thesis evaluates the feasibility of an existing one-
pass WCET analysis method with the integration of low-level microarchitecture mecha-
nisms. In particular, this part integrates a cache and a pipeline analysis to the one-pass
WCET method and evaluates the feasibility of this approach. The evaluation examines
the expressiveness of the approach using a benchmark suite and compares the method
with another WCET analysis tool. This comparison is based on the analysis time and is
time- and space-restricted.
The second part of this thesis deals withmultiprocessing. The approach focuses on shared-
memory systems. In such systems, the tasks that run in separate processors interfere and
affect the execution of each other through the shared memory and the communication
bus. The presence and the execution of one task affects the tasks running in different
processing units of the system when the tasks interfere temporally, i.e. when they coexist
and execute simultaneously. Hence, the execution time of temporally interfering tasks
running on dedicated processing units depends on the spatial interference of the tasks,
i.e. the accesses to the shared data, and the effect of the remote data access to the shared
caches. In particular, the multiprocessor analysis takes as inputs a task and all the tempo-
rally interfering tasks of the system and performs a multi-staged analysis that results in
the WCET of the target task. Each of the temporally interfering tasks runs on a dedicated
processor. The first stage of the multiprocessor analysis analyzes each task separately and
derives information about the spatial interference to the system. Using this information,
the WCET analysis proceeds to the second stage that analyzes the target tasks and es-
timates a safe over-approximation of the WCET using upper bounds for every spatially
interfering memory access.

1.4 Purpose

This thesis is part of KTH’s Timing Analysis (KTA)2, and more specifically, part of the Ab-
stract Search-based WCET Analysis [13] of KTA. Abstract Search-based WCET Analysis is
an annotation free methodology for calculating the worst-case timing path using abstract
values. The main purpose of this thesis is to extend the WCET analysis of KTA to sup-
port simple symmetric multiprocessor (SMP) systems with shared and private caches. In
addition to that, this project integrates some missing parts of KTA and investigates the
use of a more expressive abstract domain. The target architecture of KTA is the MIPS32®
instruction set architecture (ISA) [25].

2KTA tool: https://github.com/timed-c/kta

5

https://github.com/timed-c/kta

CHAPTER 1. INTRODUCTION

1.5 Ethics and Sustainability

WCET calculation is an important problem for embedded system software design because
WCET is an input to the schedulability analysis. Tightening theWCET givesmore flexibil-
ity to the schedulability analysis and may facilitate the reduction of computing resources.
That is, the tasks that compose the system have tighter deadlines and the analysis may be
able to allocate fewer processing units that reduces the required hardware.
Also, designing a multiprocessor analysis for hard real-time systems may lead to the use
of more efficient hardware by safety-critical applications. That might reduce the required
hardware for a number of applications.
With regards to ethics, this analysis describes the methodology and evaluation without
making any claims that could lead to misusing of the tool. This is important for hard
real-time applications, where a failure might have disastrous consequences.
Openness contributes to the replicability and reproducibility of the described method-
ology. Different researchers can easily verify the functionality and correctness of the
proposed model and the evaluation and can therefore increase or decrease the confidence
to the specific approach.

1.6 Verification and Evaluation

The evaluation of this thesis consists of three parts that intend to evaluate the three main
parts of the approach of this thesis, i.e. the expressiveness of the abstract domain, the
cache analysis, and the multiprocessor analysis. The first and the second parts of the
evaluation use the Mälardalen benchmark suite [22]. The last part defines a set of small
benchmarks that aim at verifying the multiprocessor approach.
The first part compares the implemented interval-congruence domain with the previously
implemented interval abstract domain. Also, it compares the KTA tool with another tool,
namely SWEET, with regards to expressiveness. The evaluation uses the analysis time to
compare the implementations in both cases. The first comparison evaluates the perfor-
mance and expressiveness of the implemented interval-congruence domain. The second
comparison evaluates the expressiveness of the KTA methodology as a whole, which in-
dicates the performance of the implemented parts. In addition to the expressiveness, the
evaluation also measures the overhead of the low-level analysis.
The second part evaluates the cache analysis and consists of two parts. The first part
measures the overhead of the cache analysis to the WCET analysis of KTA. The second
part intends to evaluate the tightness of the cache analysis using Creator ci40, a hardware
platform that contains a simple cache hierarchy [11].
The third part verifies the multiprocessor analysis approach by showing that the actual
performance of an actual hardware platform behaves according to the approach. The
evaluation of this part compares the result of the analysis with measurements on the
hardware using Creator ci40 [11], using a dual-core configuration with a 2-level cache
hierarchy.

6

1.7. CONTRIBUTION

1.7 Contribution
The main contribution of this thesis is (1) the evaluation of the feasibility of an existing
one-pass WCET method with integrated low-level mechanisms and (2) the design and
implementation of a multi-core analysis method for shared-memory symmetric multipro-
cessor systems by extending the existing one-pass method.
The first contribution of this thesis integrates an improved abstract value domain and a
low-level analysis, including a cache hierarchy and a simple classic 5-stage pipeline, to
the one-pass analysis and evaluates the feasibility of the method. The second contribu-
tion designs and implements a multi-core analysis method for shared-memory systems
by extending the one-pass single-core analysis.

1.8 Outline
The rest of this thesis consists of the following chapters that introduce the background,
describe the approach, and the evaluation of this thesis. Chapter 2 summarizes the related
work, with respect to WCET approaches, the different abstract domain approaches, as
well as low-level analyses for SMP systems. Chapter 3 describes briefly the KTA tool,
presents some necessary background for the formalization that Chapter 4 uses. The latter
chapter describes the approach of the abstract domain, the SMP analysis, and the pipeline
analysis. Chapter 5 presents the implementation of this thesis. Chapter 6 describes the
evaluation of the methodology. Based on measurements taken on a hardware platform
that implements a simple SMP system with caches, the evaluation method evaluates the
the approach and the results of the low-level analysis. Finally, Chapter 7 summarizes the
approach and the results, and presents ideas and suggestions for future work.

7

Chapter 2

Related Work

WCET is specially important for real-time embedded applications. Static methods for es-
timating a safe WCET are the major focus of many research teams because these methods
are able to provide correctness guarantees. However, the complexity of the WCET prob-
lem creates many challenges with regards to expressiveness, complexity, and automati-
zation of these analyses. In addition to that, computer architecture continues to advance
focusing mainly on performance-based criteria. More specifically, for many decades, the
basic method for improving performance was based on Moore’s law, i.e. the reduction of
the transistor size that leads to higher frequency. However, due to physical boundaries
that affect the characteristics of the transistor and among others result in increased power
dissipation, the technology moves towards advanced speculative microarchitecture fea-
tures, e.g. multi-tasking and multi-processing. Such techniques become common even in
embedded real-time systems that have high predictability requirements that are assisting
the timing analysis.
This chapter presents the related work in four categories: Static WCET Analysis, Abstract
Domains, Low-level Analysis, and Multiprocessor WCET Analysis.

2.1 Static WCET Analysis

WCET estimation is an well-known problem in the field of embedded systems. While
many industrial implementations use measurement techniques, the research community
focuses mostly on static and formal approaches. The following parts of this section de-
scribes different static approaches that deal with the WCET problem.
A widely used technique for estimating the WCET of a program is the implicit path enu-
meration technique (IPET) [33]. IPET uses implicit paths, i.e., a set of unordered basic
blocks that build a path (or a series of paths), loop bounds, and the program semantics
to construct an integer linear programming (ILP) problem1. The ILP problem maximizes

1Integer linear programming (ILP) is an optimization problem that minimizes (maximizes) an objective
function on a polytope. The objective function and the constraints, which specify the polytope, are linear
and the solution integer [45].

9

CHAPTER 2. RELATED WORK

an objective function that corresponds to the execution time of the program. Hence, the
resulting maximal value corresponds to the WCET of the specific problem. In particular,
the objective function consists of the implicit path accompanied with the maximum num-
ber of iterations (loop bounds) for each basic block. The linear constraints that IPET uses
depend on the control flow graph (CFG) of the code. For every combination of mutually
exclusive constraints, IPET generates a different constraint set and, consequently, solves
a different ILP problem [33]. The WCET of the program is the maximum of the execution
time results for every constraint set [33]. IPET estimates the WCET of a program without
the need to perform explicit-path exploration, which can lead to high complexity. How-
ever, a draw-back of the approach is that microarchitecture techniques that introduce
dependencies between different basic blocks, for example data cache analysis, require re-
formulation of the ILP problem [4, 32]. In particular, IPET requires reformulation of the
objective function and special handling and analysis for deriving the linear constraints
that form the ILP problem.
Lundqvist and Stenström [36] follow a different static approach for estimating the WCET.
The technique integrates the path and the timing analysis using cycle-level simulation that
models a cycle-level timing model of the hardware. The method extends the instruction-
level simulation technique to handle non-concrete input or memory values (denoted as
unknown). This notation forms the constant abstract domain [3], equipped with a top
value (unknown) and ordered by inclusion. To avoid explosion in the number of simulated
paths, the method merges the paths at specific points. In more detail, the simulation stops
at every unknown conditional branch and continues by resuming the path that has made
the minimum progress, i.e. has more steps to an exit node. When more than one paths
exist, the analysis merges all the paths before resuming with the simulation [36].
Abstract execution (AE) is the methodology that KTA uses for estimating the WCET and
has applications in automatic calculation of loop bounds, infeasible path identification
[20], and discovery of worst-case execution inputs [14]. This method is able to integrate
the path and timing analysis using abstract values and an abstract timing hardware model
to calculate the WCET in an automatic way. Compared to the approach of Lundqvist
and Stenström [36], the use of an abstract hardware model reduces the complexity of
the analysis and allows the use of more complex abstract domains and different merging
options that increase the expressiveness of the approach.

2.2 Abstract Domains
The purpose of abstract interpretation is to translate the semantics of a program from
the concrete domain to an abstract domain. The concrete domain represents the actual
semantics of the program, whereas the abstract domain approximates the semantics, so
that a sound program analysis becomes feasible for non-trivial programs.
Many fields that implement abstract interpretation techniques, such as static analysis in
compilers and error detection, use different abstract domains. The abstract domain is an
important part of many static approaches to the WCET problem because it affects the
expressiveness of the analysis [51]. There are two main categories of abstract domains,

10

2.2. ABSTRACT DOMAINS

i.e. non-relational and relational abstract domains. Non-relational abstract domains do
not encode relations between different states directly. For example, when representing
integer values, such as registers, non-relation abstract domains do not directly encode
the relations and dependencies between the registers throughout the program. However,
non-relational abstract domains are efficient. In order to express determining relations
between variables, the analysis may use patterns that often occur in programs (as in the
work of Thesing [50]). Relational abstract domains are, on the other hand, able to encode
dependencies between different variables, but have often a larger analysis overhead. The
rest of this section focuses on some well-known non-relational abstract domains.
Two very common numerical abstract domains are the interval [8] and the congruence
domain [19]. The former represents values in the form of an interval with a lower (l) and
an upper bound (h), vi = [l, h], l, h ∈ Z, whereas the latter represents values in the form
congruences (equally distanced integers), i.e. vc = a + bZ. Another approach, circular
linear progressions (CLP) [48], combines the interval domain with the congruence domain,
by adding a stride parameter to the interval formalization, i.e. vclp = [l, s, h], l, s, h ∈ N+.
All parameters are non negative, l, s, h ∈ [0, 232 − 1), resulting in a circular interval that
represents register wraparounds. Stride, s, is useful for representing equally dispersed
values that occur after applying specific compiler optimizations (see Section 4.1.3). Käll-
berg describes a variation of the CLP that modifies the CLP representation by replacing
the upper bound with the cardinality of the set, i.e. vi = [l, s, n], l, s ∈ Z, n ∈ N+. The
modified CLP represents wraparounds as the original CLP.
This project integrates the abstract domain to KTA. However, the KTA tool assumes that
an overflow results in a unknown state, in accordance with the C language specification
[26, 27]. Therefore, KTA does not model wraparounds. Actually, the abstract domain that
this thesis implements is a combined interval and congruence abstract domain that uses
the notation of the modified CLP [28]. The interval-congruence implementation contains
some changes on the domain of the l, s, n parameters, i.e. l ∈ Z, s, n ∈ N+ (see Section
4.1).
Relational abstract domains, like the polyhedron domain [10], the octagon abstract do-
main [42], and different weakly relational domains [41], are more expressive, but are
computationally expensive. All the above-mentioned relational abstract domains have
draw-backs related to non-linear operations, such as multiplication and division. These
operations result in an rough over-approximation [18]when applied to relational domains.
However, relational approaches might give an overall higher expressiveness and result in
a tighter WCET approximation.
A recent developement improves the performance of the polyhedra domain in both time
and space by two to five orders of magnitude [49]. This developement makes the poly-
hedra domain more attractive for static analyses and this solution may be suitable for the
WCET problem.

11

CHAPTER 2. RELATED WORK

2.3 Low-level Analysis

In this thesis, low-level analysis refers to the microarchitecture model that intends to in-
tegrate low-level microarchitecture mechanisms to the WCET analysis of KTA. Most of
the static approaches use low-level models that form abstract domains. Subsequently, dif-
ferent analysis approaches (as in Section 2.1) integrate the low-level analysis into each
approach. The following part of this section describes different methodologies that inte-
grate low-level microarchitecture features to the WCET analysis.
Lundqvist and Stenström [36] use a cycle-level timing model of the hardware for per-
forming WCET analysis. The pipeline and cache models use a merging policy for im-
proving the analysis performance. In general, this approach uses traditional simulation
techniques and implements a precise hardware model for both the pipeline and the cache.
The pipeline analysis uses pipeline reservation tables for recording the release of each
resource [36].
Integrating microarchitecture features in the IPET methodology requires reformulating
the problem. Many microarchitecture features depend on the path history that IPET does
not represent directly [4]. For example, Li et al. [32] integrate an instruction cache analysis
in IPET requires reformulating the ILP problem. This reformulation includes redefinition
of the objective function and the program constraints, so that the analysis considers the
cache dependencies between the basic blocks. Li et al. [32] extract the program constraints
by defining a so-called cache-conflict graph that represents the conflicts between basic
blocks. Burguière and Rochange [4] integrate a bi-modal branch predictor model in IPET
by adding constraints that consider the misprediction counts. The analysis modifies the
execution counts of the blocks and edges in the CFG to consider themispredicted branches
[4].
In another approach based on abstract interpretation, Ferdinand and Wilhelm design a
cache analysis consisting of three different analyses, i.e. the Must, the May, and the Per-
sistence analysis [16]. Must analysis describes the conservative case that preserves the
cache blocks that always remain in the cache during the execution of a specific basic
block. May analysis preserves the cache blocks that might be present in the cache dur-
ing the execution of a specific basic block. Finally, the Persistence analysis deals with
special cases, where none of the previous analyses applies. For example, a memory ac-
cess might result in a miss in the first iteration, but a hit in all iterations that follow [16].
These three combined analyses create an execution profile that results in a conservative
approximation for the worst-case execution path [16]. The analysis results in a reformu-
lated ILP problem for IPET. The Persistence analysis of Ferdinand and Wilhelm contains
a correctness issue that Cullmann analyzes [12].
This thesis uses abstract execution for estimating the WCET. In a similar way as in the
work of Lundqvist and Stenström [36], abstract execution models the low-level microar-
chitecture features in the program state and the analysis proceeds in a single pass. For
modeling the pipeline, the analysis uses resource usage patterns based on a general 5-
stage model [23]. The cache analysis integrates the abstract cache domain of the Must
analysis of Ferdinand and Wilhelm [16] into abstract execution.

12

2.4. MULTIPROCESSOR WCET ANALYSIS

2.4 Multiprocessor WCET Analysis
Performance-oriented microarchitecture mechanisms introduce different challenges to
theWCETproblem, due to theweak predictability properties of thesemechanisms [29, 38].
Hard embedded-system applications have certification requirements that follow strict
safety standards [29, 38]. Therefore, extending the current single-core WCET estimation
approaches is not always straight forward.
Predictability is an important requirement that makes it easier to attain guarantees about
the behavior of a hard real-time system. Mancuso et al. present a shared-memory scheme
that divides the memory in different sections that map to every processing unit. This
scheme aims at utilizing an OS-level framework that isolates each processing unit by par-
titioning the shared memory. The purpose of this approach is to treat each core in a
multi-core system independently and apply single-core analysis techniques directly [38].
Other approaches extend single-core WCET techniques to support support multiprocess-
ing systems. Chattopadhyay et al. and Zhang and Jun [6, 52] extend the IPET method-
ology to analyze multi-core systems. IPET uses ILP for solving an optimization problem
that models the program and the architecture. In the case of a multi-core architecture,
IPET has to model the multiprocessor hardware. The analysis performs different analyses
to deal with the dependencies between tasks running in dedicated processors. The inter-
action between the tasks occurs usually through the shared memory. More specifically,
Zhang and Jun [52] extends the cache-conflict graphs, first described by Li et al. [32], for
designing multi-core analysis. Chattopadhyay et al. base their analysis on the pipeline
modeling of Li et al. [31] to extend the IPET methodology for multi-core platforms [6].
Pellizzoni et al. use memory traffic arrival curves to record the activity of each core in a
multi-core system [47]. These arrival curves represent the upper bound of the memory
traffic over time. The method performs a delay analysis that proceeds in two steps. First,
the delay analysis calculates the worst-case delay of one task running in isolation and
subsequently, uses the arrival curves, in a form of memory access profiling of all tasks, to
estimate the worst-case delay of the analyzed task.

13

Chapter 3

Background

The purpose of this chapter summarizes the background that is necessary for describing
the approach of this thesis. The first section, Section 3.1, describes the basic methodology
of the KTA tool with focus on the parts that are relevant to the approach of this thesis.
The next three sections, i.e. Sections 3.2, 3.3, and 3.4, present the background related to
abstract interpretation, which is the basic method that KTA uses for deriving theWCET of
a task. This theory is important for defining the approach and describing the contributions
of this thesis with regards to the abstract interpretation framework. More specifically,
abstract interpretation is the basic framework for the value domain, the cache, the cache
hierarchy, and the pipeline states. Finally, Section 3.5 introduces the cache-coherence
problem that appears in shared-memorymultiprocessor systems. To address this problem,
the multiprocessor analysis uses MESI [46], a bus-snooping cache-coherence protocol.

3.1 The KTA Tool

KTH’s Timing Analysis (KTA)1 tool is a static program analysis tool originally developed
by David Broman [13, 17]. KTA supports source code in the C programming language
and machine code in executable and linkable format (ELF) for the MIPS32® instruction set
architecture (ISA) [25]. In the case of C source code, KTA uses mcb32-gcc2, a MIPS32®
gcc3 cross-compiler, to generate the binary code. KTA implements two different types of
analyses, Interactive Timing Analysis [17] and Abstract Search-based WCET Analysis [13].
The latter analysis is an ongoing project that this thesis contributes to.
The purpose of this section is to provide an overall picture of KTA that facilitates the un-
derstanding of the purpose, contribution, and implementation of this thesis. The following
two subsections provide an overview of (1) the methodology and (2) the implementation
of the Abstract Search-based WCET Analysis.

1KTA tool: https://github.com/timed-c/kta
2https://github.com/is1200-example-projects/mcb32tools
3the gnu compiler collection (gcc): https://gcc.gnu.org/

15

https://github.com/timed-c/kta

CHAPTER 3. BACKGROUND

3.1.1 KTA Methodology

CFG
builder

Abstract
Execution

optimi-
zation

Figure 3.1: KTA tool work flow.

This subsection gives a high-level overview of the main methodology of the Abstract
Search-based WCET Analysis of KTA. Figure 3.1 illustrates the three main phases of the
methodology. These phases are the CFG generator, the Abstract Execution Analysis, and
finally, the Optimization phase. The next paragraphs describe these phases.

CFG Generator phase

KTA has two required inputs: (1) the name of the starting point (function name) to ana-
lyze and (2) either an ELF object file that KTA parses directly or alternatively, source code
written in C. The CFG-builder phase uses mcb32-gcc to compile the C code with a pos-
sibility to select the optimization level (KTA optional flag), and consequently, parses the
generated binary. This parsing results into the CFG of the program. KTA does not alter
the actual assembly code, so that the analyzed code is similar to the actual instructions
that the microprocessor will execute. However, the CFG-builder phase adds a number of
pseudo instructions that are useful for the next phase, i.e. Runtime Analysis. The output
of this phase is an assembly-like code in continuation passing style (CPS) in OCaml, which
is the input to the Runtime Analysis.

Runtime Analysis phase

The Runtime analysis is the part of KTA that estimates the WCET of a specific program.
This phase receives the program code as an input from the previous phase and uses ab-
stract execution to estimate the WCET of the specified routine. Abstract Execution [20] is
a static analysis method which is based on abstract interpretation [9] and has applications
in WCET analysis [14, 20]. Given an accurate hardware timing model, the abstract execu-
tion analysis of the program provides a safe WCET estimation. The method uses abstract
values to represent the possible input values of the function.
The resultingWCET of the analysis is a safeWCET approximation. The safeness guarantee
of abstract execution derives from the abstract interpretation framework. However, often,
the approximated WCET is a overestimation of the actual WCET.The Optimization phase
that follows attempts to estimate that actual WCET, using a search-based technique.

16

3.1. THE KTA TOOL

Optimization phase

The optimization phase attempts to calculate a tighter WCET (or the actual WCET) by
locating the input that leads to the worst-case execution path. The final output is less or
equal to the initially estimated WCET. This way, the optimization stage can derive the
actual WCET that corresponds to a concrete input combination.

3.1.2 KTA Implementation

The purpose of this subsection is to provide an overall picture of the implementation of
KTA in order to facilitate the understanding of the implementation details of the con-
tributed parts (Section 5.1). The focus is on the parts of KTA that are closely related to the
implementation of this thesis. More specifically, this section describes the output from the
first phase and the second phases, i.e. the CFG Generator output and the Runtime Analy-
sis phase (see Section 3.1). The optimization phase does not have a direct relation to the
contributed parts, so there is no description of the this implementation.

CFG Generator output form

The shell command for executing the WCET analysis in KTA is the following:

k t a wcet f i l e _name . c func_name

The CFG-generator phase of KTA parses the input program and generates the control flow
graph (CFG) for the targeted function in continuation passing style (CPS) in OCaml. Ap-
pendix A shows the output of the CFG generator in CPS for a simple factorial benchmark.
The output of this phase includes additional information that the Runtime Analysis uses
for estimating the WCET (see Subsection 3.1.2). This additional information includes the
memory content and the global address.
The representation of the CFG consists of the basic blocks and a basic-block table that
contains information about the basic blocks. Each basic block of the CFG forms an OCaml
function in CPS, i.e. each basic block takes one input, the main state (mstate), and returns
one output, the updated main state.
The body of the function executes abstractly the equivalent of every MIPS instruction that
the basic block contains. Every operation updates the program state (pstate), which is part
of the main state. Each abstract MIPS instruction corresponds to one OCaml function in
the runtime library. The update of the respective abstract value uses the abstract domain
implementation of the specific operation. Each basic block in the CPS representation ter-
minates either with a ret or with a next pseudo instruction. Both instructions correspond
to different functions in the runtime library that take care of resuming the execution of
the analysis to the block with the highest priority. The priority of each basic block is based
on the the distance of this basic block from a return node. This information is part of the
basic-block table that the CFG-generator phase generates.

17

CHAPTER 3. BACKGROUND

mstate
prio

pstate

batch

mstate
prio

pstate

batch

dequeue

mstate
prio

pstate

batch

ADD,MUL,…

ADD,MUL,…

mstate
prio

pstate

batch

enqueue

mstate
prio

pstate

batch

dequeue

mstate
prio

pstate

batch

. . .

Figure 3.2: Execution sequence of the runtime analysis. The priority queue dequeues the highest
priority set of program states. The analysis merges the program states if the number of program
states exceeds a threshold, defined in −bsconfig. Then, the analysis selects the first of these
program states, and finally, proceeds by executing the basic block that the selected program state
corresponds to. When the execution is over, the analysis enqueues the updated program state
for the destination nodes. Next, the analysis continues with the rest of the batch program states.
When they are over, the same procedure continues with the next high priority program state batch.

Runtime Analysis implementation

The runtime analysis phase (see Section 3.1.1) is the part that computes the WCET using
abstract execution (see Section 3.3). A basic struct that contains all the program infor-
mation is the main state. The following code snippet is the definition of the main state
(mstate).

type msta t e = {
c b l o ck : b l o c k i d ; (* Cu r r e n t b a s i c b l o c k *)
pc : i n t ; (* Cu r r e n t program c o u n t e r *)
p s t a t e : b r a n chp r o g s t a t e ; (* Cu r r e n t program s t a t e *)
ba t ch : b r a n chp r o g s t a t e l i s t ; (* Cu r r e n t ba t c h o f program s t a t e s *)
b b t a b l e : b b l o c k _ i n f o a r r ay ; (* B a s i c b l o c k i n f o t a b l e *)
p r i o : pqueue ; (* O v e r a l l p r i o r i t y queue *)
r e t u r n i d : b l o c k i d ; (* B l o c k i d when r e t u r n i n g from a c a l l *)
c s t a c k : (b l o c k i d * pqueue) l i s t ; (* C a l l s t a c k *)

}

Figure 3.2 demonstrates how the runtime analysis works. The main state contains, among
other fields, the basic-block table (bbtable) and a priority queue (prio). Initially, the pri-
ority queue contains only the first basic block, which corresponds to the initial function

18

3.2. ABSTRACT INTERPRETATION

(the function to analyze). Every element in the priority queue contains one or more pro-
gram states. The analysis selects the highest priority element. Before proceeding, the
analysis merges the program states of the selected element so that they do not exceed a
threshold, which is configurable using command-line option −bsconfig. Then, the basic
block of the first element of the merged program states starts executing and the rest of the
program states are enqueued in batch. When the execution reaches the final instruction
of the basic block, a ret or next, the resulted program state (or the two resulted program
states) are enqueued to the priority queue (prio) and attain the priority that corresponds
to their target basic block. The execution continues by executing the rest of the batch
program states (batch). When the batch queue is empty, the analysis proceeds with the
next (current) highest priority program states.

3.2 Abstract Interpretation
Abstract Interpretation is a semantics-based formal framework for static analysis [9]. The
framework provides correctness guarantees, an important property for many static anal-
ysis applications.
There are various applications that use abstract interpretation to statically analyze a pro-
gram [7]. Among these applications, there are approaches to the WCET problem that use
techniques based on abstract interpretation to extract useful properties of a program and
calculate a sound WCET for the program. For example, [5, 15, 28] use approaches based
on abstract interpretation to extract information about the execution of a program.
Performing an analysis using concrete representation, i.e. without approximations, is
accurate, but leads to very large analysis time, because the number of execution paths in
non-trivial programs grows fast. For this reason, static analysis requires some level of
abstraction or approximation. The purpose of this abstraction is to represent the program
semantics in a domain that abstracts the behavior of the program in a sound way, i.e.
using conservative over-approximations. By abstracting the semantics of a program, the
analysis is able to extract useful information in finite time. Abstract Interpretation is a
framework that defines formal properties of the abstraction for constructing sound static
analyses.
This section does not provide a detailed description of the abstract interpretation frame-
work, but an overview that is useful in the chapters that follow. Many of the definitions
and structures are based on the following sources: the initial paper of Cousot and Cousot
[9], the book Principles of Program Analysis [44], and the Introduction to the Abstract
Interpretation [3]. These sources provide a more throughout description and complete
definitions of the abstract interpretation framework and the related theories.

3.2.1 Definitions

Abstract Interpretation is a formal method based on Lattices, i.e. abstract mathematical
structures that are based on order theory. A static analysis method based on abstract
interpretation uses entities that form a lattice. These entities describe two domains, the

19

CHAPTER 3. BACKGROUND

concrete and the abstract domain. The purpose of abstract interpretation is to define a
sound translation from the concrete to the abstract domain, so that the analysis uses the
abstract semantics to approximate the program information.
The following definitions are necessary for defining the abstract interpretation frame-
work.
The definition of a partially ordered set is the following:

Definition 1. A partially ordered set is a set L that is equipped with a relation, ≤, which
is (1) reflective a ≤ a,∀a ∈ L, (2) transitive a ≤ b ∧ b ≤ c =⇒ a ≤ c,∀a, b, c ∈ L, and
(3) antisymmetric a ≤ b ∧ b ≤ a =⇒ a = b,∀a, b ∈ L

A least upper bound (lub) or supremum is defined as follows:

Definition 2. Least upper bound or supremum of a subset S of a partially ordered set
S ⊂ L(≤), is the least element l ∈ L that is greater or equal than all elements of S.

Similarly the greatest lower bound (glb) or infimum is defined as follows:

Definition 3. Greatest lower bound or infimum of a subset S in a partially ordered set
S ⊂ L(≤), is the greatest element l ∈ L that is lower or equal than all elements of S.

The definition of a lattice and a complete lattice are the following:

Definition 4. A lattice is a partially ordered set L(≤) such that: ∀a, b ∈ L, there is sup =
a ∪ b and inf = a ∩ b. L(≤,∪,∩) denotes a lattice.

Definition 5. A complete lattice is a lattice L(≤,∪,∩), such that every subset S ⊆ L has
a supremum, ∪S and an infimum, ∩S. Hence, L has an infimum,⊥ = ∩∅ and a supremum
⊤ = ∪L. L(≤,⊥,⊤,∪,∩) denotes a complete lattice.

3.2.2 Collecting Semantics
Collecting semantics aims at representing all the reachable states that a program may
reach for any input state.
To do that, collecting semantics computes the set of all possible traces based on the seman-
tics of the program. A trace is a sequence of allowed transitions, Tr = {s0 → s1... →
sn|s0 is the initial state, and si → si+1 is an allowed transition}, according to the pro-
gram semantics. Let final : Tr → S be a function that returns the final state of a trace:
final({s0 → ...→ sn}) = sn. The set of all reachable states is Sr = {s|∃t ∈ P(Tr), s =
final(t)}.
The set of all traces of all states ordered by inclusion forms a complete lattice [3]. This
lattice, representing the concrete state of the program based on the program semantics is
the concrete domain, denoted as LC . The state of a program can be a variable or a register
(with the concrete domain being e.g. LC = P(Z), ordered by inclusion) or the pipeline
and the cache state that alter based on the program semantics.

20

3.2. ABSTRACT INTERPRETATION

c1

c0
a0

LC LA

α

γ

α

≤
C

Figure 3.3: Galois Insertion.

3.2.3 Galois Connection - Galois Insertion

Abstract Interpretation performs a form of translation from a concrete domain LC to an
abstract domain LA. This translation makes it possible to apply the program semantics to
the abstract domain LA instead of the concrete domain.
Abstract interpretation defines the properties of these relations, so that the transitions
to and from the abstract domain preserve the correctness of the abstraction. In particu-
lar, these transition functions form a Galois connection (or the more restricted a Galois
insertion) between the two domains.

Galois Connection

Function α : LC → LA is the abstraction function that takes as input a concrete value and
returns the abstract representation of this concrete value. Function γ : LA → LC is the
concretization function that does the opposite, i.e. takes as input the abstract value and
returns the concrete value. These functions form a Galois connection, noted as: (LC ,≤C
) α−⇀↽−

γ
(LA,≤A), iff [3]:

∀x ∈ LA, ∀y ∈ LC , x ≤A α(y) ⇐⇒ γ(x) ≤C y

Galois Insertion

In a Galois connection, there might be several elements, x1, x2 of the abstract domain,
x1, x2 ∈ LA, that map to the same value in the concrete domain y = γ(x1) = γ(x2), y ∈
LC [44]. A Galois insertion restricts the relation, so that every concrete value (e.g. set of
integers) maps to one abstract value. That is, for α, γ monotone, it is:

∀x ∈ LA, α(γ(x)) = x
∀y ∈ LC , γ(α(y)) ⊇ y

Figure 3.3 depicts a Galois Insertion.

21

CHAPTER 3. BACKGROUND

Operators Collecting Semantics Abstract Semantics
+ : Z × Z → Z +C : P(Z) × P(Z) → P(Z) +A : LA × LA → LA

a +C b = {xa + xb|∀xa ∈ a, ∀xb ∈ b}, a, b ∈ P(Z) a +A b = α(γ(a) +C γ(b)), a, b ∈ LA

Table 3.1: Abstract definition of the addition operator for an integer variable. The collective
semantics are sets of integer values, and the definition of the abstract + operator uses Equation
3.2.

3.2.4 Abstract Semantics

The calculation of the abstract semantics requires translating the concrete semantics to
abstract semantics.
The definition of the abstract semantics uses the Galois insertion for translating between
the concrete domain (the collecting semantics) and the abstract domain. Each abstract
operator should satisfy the following condition for maintaining local consistency.

fC ⊆ γ ◦ fA ◦ α (3.1)

Equation 3.2 presents a method to derive the abstract semantics of an operator. This defi-
nition is the best possible abstraction for an operator that satisfies the condition for local
consistency (Equation 3.1) [3].

fA = α ◦ fC ◦ γ (3.2)

Table 3.1 shows an example of the translation of the + integer operator to the abstract
semantics.

3.3 Abstract Execution
Abstract execution (AE) is a static analysis method based on abstract interpretation [43].
Abstract execution has applications in WCET-related analyses, such as the automatic cal-
culation of loop bounds and identification of infeasible paths [20]. Another application
of AE is the identification of the input values that result in the worst-case execution path
[14].
According to Gustafsson et al., abstract execution is based on a static analysis method,
widely used in program checking, i.e. symbolic execution [20]. However, abstract exe-
cution uses abstract values, instead of symbols, as inputs and produces abstract values
as outputs. The abstract domain definitions follow the abstract interpretation framework
and form complete lattices.
During AE, the abstract values represent the set of all possible inputs and values that
might occur at every execution point. An abstract state represents the current program
state, and every instruction typically updates this state. A branch splits the control flow
to different execution paths that generate new program states. Executing all the possible
paths may lead to high time and space complexity. For this reason, AE merges the states

22

3.4. ABSTRACT VALUE DOMAINS

…

≤ 5

×2×3

∪C

…

C =
[
vi = [1, 10]

]

C =
[
vi = [1, 5]

]
C =

[
vi = [6, 10]

]

C =
[
vi = [3, 15]

]
C =

[
vi = [12, 20]

]

C =
[
vi = [3, 20]

]

(a) Interval Domain

…

≤ 5

×6×3

∪C

…

C =
[
vi = [1, 1, 10]

]

C =
[
vi = [1, 1, 5]

]
C =

[
vi = [6, 1, 5]

]

C =
[
vi = [6, 6, 5]

]
C =

[
vi = [18, 3, 5]

]

C =
[
vi = [6, 3, 9]

]

(b) Congruence Domain

Figure 3.4: Abstract Execution in the (a) Interval Domain, xi ∈ [l, h] =⇒ l ≤ xi ≤ h and (b)
Congruence Domain, xi ∈ [l, s, n] =⇒ xi = l + s · i, 0 ≤ i < n.

at specific program points, as for example branches or function returns. Figure 3.2 depicts
the basic methodology of the AE execution approach of KTA.
Abstract execution is based on abstract interpretation. Hence, the safeness of the result
depends on the abstract domain, the abstract functions, and the abstract harware model.
These definitions are based on abstract interpretation, which provides soundness guaran-
tees.

3.4 Abstract Value Domains

In abstract interpretation, an abstract domain forms a complete lattice L(≤,⊥,⊤,∪,∩)
equipped with a set of monotone functions with type: L × L ⇒ L. The interval and
the congruence abstract domains are two well-known and widely-used abstract domains.
The interval domain represents a variable as an interval and the congruence domain rep-
resents a variable as a set of equally dispersed integers. Section 2.2 describes the two
domains in more detail. The combination of the two abstract domains can result in a hy-
brid abstract domain that benefits from both representations. That way, the IC abstract
domain represents a value as an interval with a constant stride parameter in the following
way: x =A [l, s, n]⇒ γ(x) ∈ {l, l + s, l + 2s, ..., l + (n− 1)s}, l ∈ Z, s, n ∈ N+.
In addition to the value representation, all the MIPS32® operations are mapped to abstract
functions that are sound, i.e. satisfy the local consistency condition. So, the concrete result
of the concrete function is a subset of the concrete value of the result of the abstract func-
tion applied to the abstract representation of the concrete input: fc(xc) ⊂C γ(fA(α(xc)))

23

CHAPTER 3. BACKGROUND

3.4.1 Interval Domain
The interval domain [9] is a commonly-used value abstract domain in static analysis. The
main advantages of the interval domain are its simplicity and efficiency.
The definition of the interval domain is the following:

SI = {[l, h]|l ∈ Z ∪ {−∞}, h ∈ Z ∪ {+∞}, l ≤ h}

The partial ordering on Interval, ⊆I is as follows:

[l1, h1] ⊆I [l2, h2]⇔ l1 ≥ l2 ∧ h1 ≤ h2

The least upper bound, [l1, h1] ∪I [l2, h2], of two intervals, [l1, h1] and [l2, h2], are:

[l1, h1] ∪I [l2, h2] = [min(l1, l2), max(h1, h2)]

The greatest lower bound, [l1, h1] ∩I [l2, h2], of two intervals, [l1, h1] and [l2, h2], are:

[l1, h1] ∩I [l2, h2] =
{

[max(l1, l2), min(h1, h2)] , max(l1, l2) < min(h1, h2)
∅ , otherwise

The concretization function is the following:

γI(si ∈ SI) =

Z ∪ {−∞, +∞} , si = ⊤
∅ , si = ⊥
{x ∈ Z|l ≤ x ≤ h} , si = [l, h]

The abstraction function is the following:

αI(sa ∈ P(Z)) =
{
⊥ , sa = ∅
[min(sa), max(sa)] , otherwise

3.4.2 Congruence Domain
The congruence domain [19] is a value abstract domain that represents all the equally
dispersed integer values. It is also often used in conjunction with interval domain to form
more accurate value abstract domains.
The congruence domain is denoted as a + bZ, with a ∈ Z and b ∈ N and represents the
set of all number that are a modulus b, i.e. {x = a (mod b)|x ∈ Z}. The set represents all
numbers with distance b having an offset a:

SC = a + bZ

The partial ordering on the congruence domain, ⊆C , is the following:

a1 + b1Z ⊆C a2 + b2Z⇔ (a1 − a2 ∈ b2Z) ∧ (b1Z ⊆ b2Z)

24

3.5. CACHE COHERENCE IN MULTIPROCESSOR SYSTEMS

The least upper bound a1 + b1Z ∪C a2 + b2Z and the greatest lower bound a1 + b1Z ∩C

a2 + b2Z of two congruences are:

a1 + b1Z ∪C a2 + b2Z = a1 + gcd(a1 − a2, b1, b2)

a1 + b1Z ∩C a2 + b2Z =
{

a + lcm(b1, b2)k , ∃a ∈ a1 + b1Z ∩ a2 + b2Z, k ∈ Z
∅ , otherwise

In the previous formulas, gcd is the greatest common divisor, and lcm is the least common
multiple.
The concretization function is the following:

γC(a + bZ) =

{a + kb|k ∈ Z} , a, b ̸= 0
∅ , b = 0(a + 0Z = ⊥)
Z , a = 0(0 + 1Z = ⊤)

The abstraction function is the following:

αC(sc ∈ P(Z)) =
{

a + 0Z = ⊥ , sc = ∅
x0 + gcd({|xi − xj |, ∀xi, xj ∈ sc}), x0 ∈ sc , otherwise

3.5 Cache Coherence in Multiprocessor Systems
This section introduces the cache-coherence problem that appears in shared-memory sys-
tems and describes MESI, the protocol that the multiprocessor analysis uses to address the
cache-coherence problem. MESI is a widely-used bus-snooping protocol that addresses
the cache-coherence problem and has a low implementation overhead. The multiproces-
sor analysis of this thesis considers symmetric multiprocessor (SMP) systems, a subclass
of shared-memory multiprocessor systems. In an SMP system, all processing units of the
multiprocessor system are identical, and a shared bus connects these identical units. This
means that all processing units in an SMP system contain identical private cache hierar-
chy and an identical processing unit. There are multiple applications of SMP architectures
in small-scale multiprocessor systems, such as PCs and embedded platforms, for example
the Creator ci40 platform [11]. MESI is a very common protocol in small-scale systems
because the protocol implementation is simple and reduces the bus traffic compared with
other shared-bus snooping solutions. The MESI protocol has four states, but many of the
implementation details differ in different hardware implementations. This chapter uses
the original protocol description of Papamarcos and Patel [46].
The next parts of this section present some basic background and definitions, introduce the
cache-coherence problem and describe the MESI protocol that the multiprocessor analysis
of this thesis implements.

25

CHAPTER 3. BACKGROUND

p1

L1

L2

p2

L1

L2

p3

L1

L2

p4

L1

L2

L3

MEM

Figure 3.5: Symmetric Multiprocessor System with 2 levels of private caches and one shared
cache.

tag set index byte offset

Figure 3.6: An Address consisting of three parts. The least significant part of the address, i.e. byte
offset, indexes a byte within a block. One block comprises a cache line. The set index part indexes
a set in a cache. The tag part identifies the address block in the cache.

…. …. …. ….

t|v|d nb

t|v|d nb

t|v|d nb

t|v|d nb

t|v|d nb

t|v|d nb

t|v|d nb

t|v|d nb

t|v|d nb

t|v|d nb

t|v|d nb

t|v|d nb

…

…

…

…

l0

l1

lns−1

lns−2

0 1 … aLines :
SetIndex :

Figure 3.7: An a-way set associative cache with ns sets and nb bytes per block. Each line contains
the data (block) and additional fields (denoted as t|v|d). These fields are the tag, the valid bit, and
the dirty bit. The total size of the cache is cs = n · a · nb.

26

3.5. CACHE COHERENCE IN MULTIPROCESSOR SYSTEMS

3.5.1 Basic Cache Notation

A cache is a fast memory that often resides near the CPU and contains copies of memory
subsets. The purpose of the cache is to exploit the temporal and spatial locality, i.e. the
reuse of the same and adjacent data by a program. This section provides only a brief
overview of caches and their functionality. More information about caches is available in
the book of Hennessy and Patterson. [23, Appendix B].
A cache contains the notion of a block, i.e. the smallest memory subset that may appear
in the cache. Every memory block maps to specific position(s) in the cache. Figure 3.6
depicts the partition of a memory address in a cache. The least significant bits of an
address, namely the byte offset, decides on the position of the byte in the block. The set
index part of the address decides on the position of the memory block in the cache. The
first part of the address, i.e. the tag, identifies the memory address of the block that resides
in the cache. A block together with the tag, and some additional flags, i.e. the valid bit
and the dirty bit, constitute a cache line. The valid bit indicates that the content of a cache
is valid and is an low-overhead way to invalidate the a cache line and the total cache. The
dirty bit indicates that the content of the cache is not consistent with the memory. An
important parameter of a cache is the associativity. Associativity refers to the number of
equivalent cache lines that one memory block maps to. Figure 3.7 depicts an A-way set
assotiative cache. Another important parameter in a cache is the replacement policy. The
replacement policy dictates which block to replace when a set is full.

3.5.2 Cache-Coherence Problem

Multiprocessor systems with private and shared memory exhibit cache-coherence prob-
lems, due to the presence of multiple copies of the same memory locations in the memory
hierarchy. The problem appears when multiple private caches share the same memory
block these blocks do not always contain the same updated copy of the data. More pre-
cisely, the cache-coherence problem has two aspects, coherence and consistency. Coher-
ence concerns the behavior of reads and writes to the same memory location, whereas
consistency defines the behavior of writes (and reads) to different memory locations by
the same processor [23, Chapter 5].
There are different solutions for maintaining coherence in a shared-memory multiproces-
sor system. Two of the main techniques are bus-snooping protocols and directory-based
cache-coherence protocols. Directory-based cache-coherence protocols maintain the in-
formation about the status of a block in one location. Bus-snooping protocols, such as the
MESI protocol, use the bus to maintain the status of each cache, coherent [23, Chapter 5].
The next subsection describes the MESI protocol.

3.5.3 MESI Protocol

MESI is a four-state cache-coherence protocol. This definition of the MESI protocol is
based on the original description of the protocol by Papamarcos and Patel [46]. The MESI

27

CHAPTER 3. BACKGROUND

State Description
Invalid The block is not valid.
Exclusive No other cache contains this block. It is con-

sistent with the shared memory.
Shared There may be a cache that contains this

block. It is consistent with the shared mem-
ory.

Modified No other cache contains this block. The block
is modified and inconsistent with the shared
memory.

Table 3.2: Description of the four states of the MESI protocol: Invalid, Exclusive, Shared, and
Modified.

protocol uses a shared bus for communication between the different cores of the SMP. In
this analysis, each core accesses the shared memory and at least one level of private cache.
In SMP systems with one bus that connects the independent processing units with the
shared memory, this bus is the bottleneck. The reason is that the bus serializes all shared-
memory requests. Therefore, these systems cannot scale to a large number of cores. How-
ever, MESI is relatively easy and inexpensive to implement, and many embedded multi-
core systems implement MESI to maintain coherence.

States

MESI is an extension of MSI that is a three-state write-invalidate bus-snooping protocol
with many extensions [23, Chapter 5]. The states of the MSI protocol are: Modified (M),
Shared (S), and Invalid (I). Every write to a shared-memory block invalidates (I) all remote
copies of this block. A read miss or a read hit of a shared (S) or modified (M) block results
in a transition to a shared state (S). MSI allows cache-to-cache transactions when the
requested memory block is present in another a remote cache.
MESI extends MSI by introducing an Exclusive (E) state, which indicates that the specific
memory block is not present in any of the remote caches. The introduction of the exclusive
state (E) improves the performance of the MSI protocol by reducing the traffic on the bus.
That is, a write to an exclusive block (E) does not broadcast an invalidate message to the
bus. The cache state of a memory block acquires the exclusive (E) state, when the shared
memory (and not one of the private remote caches) satisfies the requested memory. If the
private cache of a different processing unit contains the requested block, it replies to the
request and delivers the data to the requesting cache. Then, the state of the cache block
of the requesting cache becomes Shared (S). Table 3.2 describes the definition of the states
of the MESI protocol.
Figure 3.8 illustrates all the possible MESI state transitions. On a local read or write re-

28

3.5. CACHE COHERENCE IN MULTIPROCESSOR SYSTEMS

M

I

ES

rw
rite/w

b
rw

ri
te

/s
d

rwrite/sd

rwrite/−
rread/−

rr
ea

d/
wb

rread/sdata

rread/−

pw
ri

te
/i

nv pwrite/−

p
w

ri
te

/i
n

v

pwrite/−
pread/−

pread(s)/−

pr
ea

d(s̄
)/−

pread/−pread/−

Bus transactions

Processor requests

Figure 3.8: MESI protocol, Processor and Bus initiated operations. M, E, S, and I stand for the
states of the MESI protocol. The dotted lines correspond to the bus-initiated transactions, whereas
the solid lines correspond to the CPU-initiated transactions.

quest, the requesting processor initiates the transition. On a read request, if the core
receives a block by another core, the resulting state is shared (S). If the shared memory
delivers the requested block the cache block acquires the exclusive state (E). In this figure,
all local requests appear in solid lines. The dotted lines represent the remote requests,
i.e. requests or invalidates of other cores. On these remote processor requests, the bus
snooper initiates the state transition.

29

Chapter 4

Approach

This chapter describes the main contribution of this thesis in five parts: (1) the value
abstract domain, (2) the cache state, (3) the cache hierarchy state, (4) the pipeline state,
and (5) the multi-core cache-based analysis.
First, Section 4.1 describes the implementation of a non-relational value abstract domain
that replaces the previously implemented value abstract domain in KTA.The implemented
abstract domain is based on the circular linear progressions (CLP) abstract domain that Sen
and Srikant describe in [48] and the modified version of CLP of Källberg in [28].
The following three sections constitute the low-level analysis. The first two sections,
namely Section 4.2 and Section 4.3, define the cache and the cache hierarchy states. The
definition of the cache state is based on the Must analysis of Ferdinand and Wilhelm [16].
The cache hierarchy state combines the different cache levels to an abstract cache hier-
archy state that represents the cache hierarchy. Subsequently, Section 4.4 describes the
pipeline abstract state, which models a classic RISC 5-stage pipeline.
Up to this point, the analysis concerns a single-core cache-based system. The single-core
cache-based analysis integrates the low-level analysis to the program state of KTA during
the Runtime Analysis phase. Section 4.5 describes the multi-core cache-based analysis ap-
proach that models a symmetric multiprocessor system with shared and private caches.
This analysis implements the MESI bus snooping protocol [46] to maintain cache coher-
ence. The analysis aims at estimating the WCET of a task under the presence of spatially
and temporally interfering tasks. The multiprocessor analysis makes use of the single-
core cache-based analysis in two phases. The first phase gathers necessary information
for each of the contributing tasks, and the second phase performs the WCET analysis
using the information collected in the first phase.

4.1 Abstract Value Domain

This section focuses on the definition and the description of the IC abstract domain, i.e.
the abstract domain that this thesis integrates into KTA. IC is a simplified version of the
modified circular linear progressions (CLP) domain that Källberg describes in his thesis

31

CHAPTER 4. APPROACH

[28]. TheModified CLP originates from the work of Sen and Srikant that describe the CLP
abstract domain [48]. CLP combines two well-known abstract domains, i.e. the interval
[9] and the congruence domain [19]. The CLP domain is more expressive than the interval
domain because it is able to express non-continuous intervals. The latter results often in
a decreased number of infeasible paths. CLP uses circular representation to represent
wraparound [28, 48]. However, KTA, in accordance with the C language specification
[26, 27], considers overflow an unknown state. For this reason, in case of an overflow,
the register or variable gets the top value, denoted as ⊤, that corresponds to any possible
value, i.e. [−231, 231 − 1].
The IC abstract domain uses the notation of the modified CLP, but is actually a combi-
nation of the interval and the congruence domain. The IC domain follows the modified
formalization of Källberg [28]. The next parts of this section define the IC domain, present
some of the operations that correspond to the MIPS32® instructions, and, finally, present
an example to motivate the selection of the IC domain.

4.1.1 Interval-Congruence Domain Definition

The representation of an number in the IC domain is the following:

SIC = {[l, s, n]|l ∈ Z ∪ {⊤}, s, n ∈ N+}

The least upper bound [l1, s1, n1]∪IC [l2, s2, n2] and greatest lower bound [l1, s1, n1]∪IC

[l2, s2, n2] of two sets is:

[l1, s1, n1] ∪IC [l2, s2, n2] = [l, s, n], where

l = min[l1, l2],
s = gcd(|l2 − l1|, s1, s2),
n = h−l

s , where
h = max (l1 + s1(ni − 1), l2 + s2(ni − 1))

[l1, s1, n1] ∩IC [l2, s2, n2] = [l, s, n], where

l = min[l),
s = lcm(s1, s2],
n = h−l

s , where
h = min (l1 + s1(n1 − 1), l2 + s2(n2 − 1))

The abstraction function is the following function:

αIC({k0, k1, ..., kn}|∀i, ki+1 > ki) =
{

(k0, 0, 1), n = 0
∪IC(α({k0, ..., kn−1}), (kn, 0, 1)), otherwise

32

4.1. ABSTRACT VALUE DOMAIN

Similar to the work of Källberg [28], the concretization function for the signed and un-
signed cases are the following:

γICS
([l, s, n]) = [l, l + s, l + 2s, ..., l + (n− 1)s]

The unsigned concretization function is:

γICu([l, s, n]) =

[{l}] , l > 0, s = 0
[{2w + l}] , l ≤ 0, s = 0
[{l, l + s, l + 2s, ..., l + (n− 1)s}] , l > 0, s > 0
[{l + sn′, l + sn′ + s, ..., l + sn′ + (n− n′ − 1)s} ,

{2w + l, 2w + l + s, ..., 2w + l + (n′ − 1)s}] | n′ =
⌈∣∣∣ l

s

∣∣∣⌉ , otherwise

For modeling of MIPS32® architecture for KTA, the domain is restricted based on the
register size. Hence, instead of (−∞, +∞), the top element is as follows:

⊤ = [l, s, n], where

l∈ [−231, 231 − 1],
s∈ [0, 232 − 1],
n∈ [1, 232]

4.1.2 MIPS Operations
The following parts describe the definitions of some of the MIPS32® instructions and their
implementation in the IC abstract domain.

Addition/Subtraction
The abstract functions in IC correspond to the correspond to the MIPS32® instructions
[25].
The addition corresponds to the MIPS32® ADD instruction:

ADD rd, rs, rt

This operation adds the contents of two abstract values as follows:

[l1, s1, n1] +IC [l2, s2, n2] =IC [l, s, n], where,

l = l1 + l2
s = gcd(s1, s2)
n = h−l

s + 1)
h = high(l1, s1, n1) + high(l2, s2, n2)

The subtraction SUB is similar to the addition operation:

33

CHAPTER 4. APPROACH

[l1, s1, n1]−IC [l2, s2, n2] =IC [l1, s1, n1] +IC [−l2, s2, n2]

Multiplication

There are two different operations that correspond to the multiplication of two numbers.
Both treat the operands as signed numbers. Instruction MUL returns the 32 least significant
bits of the multiplication of rs and rt to register rd. MULT returns the 32 least significant
bits of the result to the internal low LO and the 32 most significant bits to internal hi, HI.

MUL rd, rs, rt

and

MULT rs, rt

The multiplication considers only the least significant word. The most significant word
takes the ⊤ value. The definition of multiplication in the interval-congruence domain is:

[l1, s1, n1] ∗IC [l2, s2, n2] =IC [l, s, n], where,

l = min[l1 ∗ l2, l1 ∗ h2, l2 ∗ h1, h1 ∗ h2]
s = gcd(|s1 ∗ l2|, |s2 ∗ l1|, s2 ∗ s1]
n = (h′−l)

s + 1
h1 = high(l1, s1, n1)
h2 = high(l2, s2, n2)

4.1.3 Motivation for the IC domain

The IC domain combines the interval and the congruence domains to express sets that con-
sist of disperse integers. The main advantage of the IC domain compared to the interval
domain appears in the multiply and the left-shift operations. That is, the IC domain is able
to project these operations, so that the cardinality of the resulting set remains the same
or increases. On the contrary, the interval domain often results in over-approximations
that include infeasible values that may result in infeasible paths. This property improves
the expressiveness of the abstract domain in specific cases.
A common case where the IC domain improves the expressiveness of the analysis is code
resulting from a common compiler optimization strategy, namely strength reduction trans-
formation [1, Chapter 9]. The compiler applies this optimization in loops that operate on
arrays. Listing 4.1 shows an example of such code. In every loop iteration, the value of
the loop index increases by a constant number. This index accesses the array elements by
adding the array element size multiplied by the index to the array pointer. The IC domain
is able to project the multiplied value and preserve the number of elements in the abstract

34

4.1. ABSTRACT VALUE DOMAIN

value of the induction variable. On the contrary, the interval domain results in a more
conservative domain that contains infeasible paths that the analysis can never satisfy.
Code snippets 4.1 and 4.2 show the KTA analysis execution steps for the C code snippet
in Listing 4.1 for the interval and the IC domain, respectively. In this case, the IC domain
is able to terminate the analysis, whereas the interval domain fails.

1 i n t a [1 0 0] ; / / G l o b a l a r r ay o f i n t e g e r s
2 void map_2 (i n t n) {
3 i n t i ; / / The s t e p o f t h e f o r l o o p i s 1
4 f o r (i = 0 ; i <n ; i ++) { / / and t h e l o o p bound i s n .
5 a [i] = 2* a [i] ; / / The s t r e n g t h r e d u c t i o n t r a n s f o rm a t i o n
6 } / / m u l t i p l i e s t h e i n d e x by 4
7 }

Listing 4.1: A simple code example that illustrates the effect of the IC abstract domain on the
expressiveness of the analysis. A for loop accesses every array element using the index variable
i. The strength reduction transformation optimization uses the array element size as an index step.
To do that, the termination variable is multiplied by the array element size. The interval domain
is not able to project this multiplication, resulting in a more conservative set that can never be
satisfied (see example Executions 4.1 and 4.2).

… # # # # #
bleqz $a0,ex1 # # # # #
sll $a0,$a0,2 # $a0=[1,10]*4=[4,40] # # # #
lui $v0,64 # $v0=64 # # # #
addiu $v0,$v0,a # $v0=a # # # #
addu $a0,$v0,$a0 # $a0=[a+4,a+40] # # # #
lw $v1,0($v0) # $v1=a[0] # # # #

l0: # loop 1 # loop 2 # … # loop 10 # …
sll $v1,$v1,1 # $v1=a[0]«1 # $v1=a[1]«1 # # $v1=a[9]«1 #
sw $v1,0($v0) # a[0]=$v1 # a[1]$v1 # # a[9]=$v1 #
addiu $v0,$v0,4 # $v0=a+4 # $v0=a+8 # # $v0=a+40 #
beq $v0,$a0,ex1 # ex1: $a0=a+4 # ex1: $a0=a+8 # # ex1: $a0 = a+40 #

l0: $a0=[a+5,a+40] # l0: $a0=([a+5,a+7], # # l0: $a0=([a+5,a+7],
[a+9,a+40]) # # [a+9,a+11],
,…,[a+37,a+39])

lw $v1,0($v0) # $v1=a[1] # $v1=a[2] # # $v1=a[10] #
ex1: # # # # #

… # ($a0=a+4) # ($a0=a+8) # # ($a0=a+40) #

Execution 4.1: Abstract execution of the code snippet shown in Listing 4.1 using the interval do-
main. The first column shows theMIPS assembly code, compiled with themcb32 gcc crosscompiler
with the “-O1” flag. The following columns show the result of the abstract execution iterations,
when using the interval domain. In this case, the WCET analysis of KTA does not terminate.

Limitations The current implementation of the IC domain cannot handle some of the
cases of the strength reduction transformation optimization [1, Chapter 9]. More specifi-
cally, the IC domain cannot handle cases when the array element size is not a power of
two because the compiler splits the multiplication to a sum of left-shift operations, for
example 100 = 64 + 32 + 4. An example of such a case is a for loop accessing the rows
of a 2-dimensional array, when row size is not a power of two (see Listing 4.2). The ADD
abstract operation treats each IC set as independent and reduces the stride, s1 ̸= s2, to the
gcd(s1, s2) of the two abstract values. For example, an initial interval [1, 10] is [1, 1, 10]

35

CHAPTER 4. APPROACH

… # # # #
bleqz $a0,ex1 # # # #
sll $a0,$a0,2 # $a0=[1,1,10]*4=[4,4,10] # # #
lui $v0,64 # $v0=64 # # #
addiu $v0,$v0,a # $v0=a # # #
addu $a0,$v0,$a0 # $a0=[a+4,4,10] # # #
lw $v1,0($v0) # $v1=a[0] # # #

l0: # loop 1 # loop 2 # … # loop 10
sll $v1,$v1,1 # $v1=a[0]«1 # $v1=a[1]«1 # # $v1=a[9]«1
sw $v1,0($v0) # a[0]=$v1 # a[1]=$v1 # # a[9]=$v1
addiu $v0,$v0,4 # $v0=a+4 # $v0=a+8 # # $v0=a+40
beq $v0,$a0,ex1 # ex1:$a0=a+4 # ex1:$a0=a+8 # # ex1:$a0=a+40
lw $v1,0($v0) # l0: $a0=[a+8,4,9]) # l0: $a0=[a+12,4,8] # # l0: $a0=[]

$v1=a[1] # $v1=a[2] # # $v1=a[10]
ex1: # # # #

… # ($a0=a+4) # ($a0=a+8) # # ($a0=a+40)

Execution 4.2: Abstract execution of the code snippet shown in Listing 4.1 using the IC domain.
The first column shows the MIPS assembly code, compiled with the mcb32 gcc crosscompiler with
the “-O1” flag. The following columns show the result of the abstract execution iterations, when
using the interval domain. In this case, the WCET analysis of KTA terminates.

in the IC domain; multiplying it with 100 = 64 + 32 + 4 results in: ([1, 1, 10] << 6) +IC

([1, 1, 10] << 5) +IC ([1, 1, 10] << 2) = [64, 64, 10] +IC [32, 32, 10] +IC [4, 4, 10] =
[96, 32, 28] +IC [4, 4, 10] = [100, 4, 226], instead of [1, 1, 10] ∗IC 100 = [100, 100, 10]
The result leads to a more conservative IC set that contains infeasible paths. Hence, the
analysis does not terminate. Section 7.2 discusses enhancements to the abstract domain
or the runtime analysis that may improve the expressiveness of the abstract domain.

i n t a [1 0 0] [1 0 0] ; / / G l o b a l a r r ay o f i n t e g e r s
void map_2 (i n t n) {

i n t i ; / / The s t e p o f t h e f o r l o o p i s 1
f o r (i = 0 ; i <n ; i ++) { / / and t h e l o o p bound i s n

a [i] [0] = 2* a [i] [0] ; / / The a r r ay p o i n t e r i n c r e a s e s by 4 * 1 0 0 .
}

}

Listing 4.2: A simple code example that illustrates the limitations of the IC abstract domain with
regards to expressiveness. A for loop accesses every array element using the index variable i. The
strength reduction transformation optimization uses the array element size as the index step. In this
case, number 4 · 100 is not a power of two and the result of the multiplication contains infeasible
paths. Hence, the analysis cannot terminate.

4.2 Cache abstract state

The abstract cache model for the KTA tool models a cache with least recently used (LRU)
replacement policy. LRU is a widely-used replacement policy that has deterministic be-
havior. The LRU policy replaces the block in the cache set that has been requested by
the CPU less recently. Many determining parameters, such as the associativity, the block
size, and the cache size are configurable. The cache model is based on the Must analysis
of Ferdinand and Wilhelm [16]. KTA integrates the cache abstract state as part of the
program state (see Section 3.1.2) in the Runtime Analysis (see Section 3.1.1).

36

4.2. CACHE ABSTRACT STATE

The rest parts of this section describe the cache state semantics and the cache operations,
i.e. update, join, and execution time.

4.2.1 Semantics

Let nb be the number of bytes in a block, a, the associativity, ns, the number of sets in
cache, and cs, the cache size. The relation between these parameters is: cs = n · a · nb
Figure 3.7 shows an a-way set associative cache, with ns sets. The block size is nb, and the
total size is cs. Figure 3.6 shows how the cache indexes an address. The less significant
bits index the byte within a block. The following field indexes the set that the address
maps to. The last field identifies the memory block in the cache.
The cache analysis models the cache state, C , as an ordered set of ns ordered cache sets,
S. Each cache set, s ∈ S contains a cache lines, with a being the associativity of the
cache. L represents a set of cache lines (cache blocks) with the same LRU priority. The
LRU priority decides which cache line(s), l ∈ L, to replace in case of a conflict. That is, in
case of a conflict, the cache replaces the cache line(s) with the highest priority. According
to LRU, the priority of the elements of L is based on the memory accesses by the CPU.
When the cache requests a new block, this new block acquires the lowest priority (most
recently used). The cache analysis updates the rest of the blocks by increasing their pri-
ority, accordingly. In case that the cache line is full, i.e. contains a blocks, then the LRU
policy replaces the least recently used block. If the replaced block contains modified data,
the cache writes back the data to the memory. The abstract state does not duplicate the
data, but the execution time contribution of the cache considers the write back.

Abstract Block

Let nb be the number of bytes in a block. Let byte(m) = (m)%(log2(nb)) be a function
that given the memory address, returns the byte index within a block. Let M be the set
of all possible addresses. Equation 4.1 defines the set of cache blocks, B ⊆ M , as the set
of the addresses that corresponds to the first byte of a cache block.

B = {b | b ∈M ∧ byte(b) = 0} (4.1)

Abstract Cache Line

Let set : M → N be a function that returns the cache set index of the input address.
It is: set(m) = (m/log2(nb))%log2(L). Equation 4.2 defines a cache line as a set of
blocks. The abstract line, L, represents all cache lines with a specific LRU priority. More
that one lines can have the same priority, because of the join operation that merges two
cache states. Under a join, in case the two states contain the same cache block, the block
acquires the highest of the two states (less recently used). So, two cache lines may acquire
the same priority when both cache lines are present in the two caches and each has the

37

CHAPTER 4. APPROACH

resulted priority in one of the two cache states (see Section 4.2.3). A cache line, l ∈ L,
cannot contain more elements than the associativity, a.

L = {l | l ∈ (P(B)) ∧ (|l| ≤ a) ∧ (∀bi, bj ∈ l, set(bi) = set(bj))} (4.2)

Abstract Cache Set
Let lset : L → N be a function that takes one input, l ∈ L, and returns the cache set
index that corresponds to l, i.e. lset(l) = set(b)|b ∈ l. Equation 4.3 defines the cache set
type, S. A cache set, s ∈ S, is an ordered set of lines, li ∈ L, i ∈ [0, a − 1). All cache
lines in a cache set map to the same cache set. The number of elements of each cache
set corresponds to the cache associativity. The position of each element in the cache set
corresponds to the priority of this element. The priority depends on the access order of
the lines, i.e. the most recently used set has the lowest priority, e.g. l0 corresponds to the
lowest priority and la−1 to the highest.

S =

(l0, l1, ..., la−1) | ∀i, j ∈ [0, a), li, lj ∈ B ∧

lset(li) = lset(lj)∧(
i∑

k=0
|lk| ≤ i + 1

)
 (4.3)

The last part of Equation 4.3, i.e. ∀i ∈ [0, a),
i∑

k=0
|lk| ≤ i + 1, expresses an additional

requirement. That is, the total number of lines in a cache set should not exceed the asso-
ciativity, and a cache set with priority i cannot contain more elements than the free lower
priority cache sets.

Abstract Cache State
Equation 4.4 defines the cache state, C . Let ns be the number of sets in a cache, a cache
state, c ∈ C , consists of ns caches sets. Each cache set, s ∈ S, corresponds to a combina-
tion of cache lines that map to the same set.

C = {(s0, ..., sns−1) | ∀i ∈ [0, ns) , (si ∈ S) ∧ (∀l ∈ si, ∀bs ∈ l, ∀b ∈ bs, set(b) = i)} (4.4)

4.2.2 Update
The definition of the update operation is similar to the respective definition of the Must
analysis [16]. The cache state is part of the program state and each memory operation,
i.e. read or write, affects the cache state. Diagrams 4.1 show the actions that follow a read
and a write transaction. These transactions may result in a cache update operation both
upon a cache HIT and a cache MISS. A cache HIT results in an update of the replacement
priorities. A cache MISS results in an insert followed by an update of the replacement

38

4.2. CACHE ABSTRACT STATE

priorities. A cache MISS may result in a write-back when the cache set is full and the
replaced block is dirty, i.e. it contains modified data.

Cache Set Update

Let sline : S × N → P(L) be a function that takes two inputs, a cache set, s ∈ S, and
a priority, i ∈ [0, a), and returns the set of blocks with priority i in the cache set s, i.e.
sline(s, i) = li, li ∈ s. The cache set update function updates the replacement priorities
and inserts a new block if it is not present in the cache. Figures 4.2a and 4.2b show the
state update of a cache on a hit and a miss, respectively. Equation 4.5 defines the cache
set update operation, US : S ×B → S.

US(s, b) =

(l0 ← {b},
li ← s[i− 1], | i ∈ [1, j]
lj ← s[j − 1] ∪ (s[j]− {b})
li ← s[i] | i ∈ [j + 1, a− 1]), ∃j ∈ [0, a− 1], b ∈ s[j]

(l0 ← {b},
li ← s[i− 1] |i ∈ [1, a− 1]), otherwise

(4.5)

Cache State Update

The cache update function, UC : C×B → C , updates the cache state, where the requested
address m ∈M might reside. Equation 4.6 defines the cache update function.

UC(c, b) = (cj ← US(c[j], b), |set(b) = j,
ci ← c[i], |otherwise) (4.6)

The actions following a read and write operation depend on the cache policies. Figure
4.1 demonstrates the possible result upon a cache transaction. The main configuration
parameters used for this model are write allocate (WA) and write no allocate (WNA), and
write back and write through. The first two, allow and, respectively, prohibit loading the
block to the cache in case of a write miss. The last two write policies are complementary;
Write back delays and write through forces the immediate write of a modified block to the
memory.

Read Update

The read update function is equivalent to a cache update under both a MISS and a HIT.
Equation 4.7 defines the cache update function under read, UCR

: C ×B → C .

UCR
(c, b) = UC(c, b) (4.7)

39

CHAPTER 4. APPROACH

check cache

read block
mem &

update cache
(LRU)

update
cache
(LRU)

write
replaced
block

read transaction

HIT MISS

write back
&& dirty

(a) Read Cache

check cache

update
cache
(LRU)

write mem
write mem

read block
mem &

update cache
(LRU)

write
replaced
block

write mem

write transaction

HIT
MISS

write through
write allocate write no allocate

write through
write back
&& dirty

(b) Write Cache

Figure 4.1: Cache read and write transaction diagrams for different write policies. The horizontal-
patterned boxes represent the cache update case, when the update operation reorders the priorities
after a HIT. The vertical-patterned boxes correspond to a cache update that inserts a new block to
the cache and reorders the priorities, respectively. The latter case is a result of a cache read MISS,
and cache write MISS for write-allocate policies. In these cases, inserting a new block can result
in replacing a dirty block. The crosshatch-patterned boxes represent all write-to-memory cases,
both due to a write-through/write-no-allocate policies and due to the replacement of a dirty block.

Write Update

The main difference between a read and a write update function is in the case of WNA
policy under a MISS. In this case, the cache state remains unchanged. Equation 4.8 defines
the write update function.

UCW
(c, b) =

c, WNA ∧ ∄h ∈ [0, a), b ∈ s[h]

UC(c, b), otherwise
(4.8)

4.2.3 Join

The definition of the cache join function is similar to the respective definition of the Must
analysis [16]. When a merge between two program states occurs, the join operation
merges the two cache states to one cache state. The cache join function applies the set
join function to the equivalent cache sets of the two cache states.

40

4.2. CACHE ABSTRACT STATE

{b3,b4}

{b2}

{ }

{b1}

{b4,b2}

{ }

{b1}

{b3}

lw $t1, 0(b3)

LRU

(a) Update LRU - Cache Hit

{b3,b4}

{ }

{b2}

{b1}

{ }

{b2}

{b1}

{bk}

[b3,b4]

if (dirty) → write-back

lw $t1, 0(bk)

(b) Update LRU - Cache Miss
(read or write (with write-
allocate policy))

{b4}

{b3}

{b2}

{b1}

{b4}

{b2}

{b1}

{b3}

{b4}

{b2,b3}

{b1}

{ }

∩

(c) Join LRU

Figure 4.2: The abstract model of a 4-way set-associative cache with LRU replacement policy. The
LRU replacement policy replaces the block that has been least recently accessed by the cpu, i.e.
the age it was accessed. The figure depicts the sets order by the access order, i.e. the top set of
lines has been accessed more recently, whereas the last line is the least recently used line. When
the cache line is full, the last set will be replaced.

Cache Set Join

Figure 4.2c illustrates the cache set join operation of an LRU cache. Equation 4.9 defines
the cache set join operation, JS : S × S → S.

JS(s1, s2) = (lk ← {b | ∃i, j ∈ [0, a) , b ∈ s1[i] ∧ b ∈ s2[j] , k = max(i, j)}|k ∈ [0, a)) (4.9)

Cache State Join

The cache state join operation applies the cache set join operation to the equivalent cache
sets of the two cache states. Equation 4.10 defines the cache join operation, JC : C×C →
C .

JC(c1, c2) = (JS(c1[i], c2[i])| ∀i ∈ [0, ns)) (4.10)

4.2.4 Execution Time

The contribution of a cache to the execution time depends on the cache characteristics,
such as the size and associativity. In this model, the contribution of the cache to the
execution time is the access time (or hit time) and is configurable for every cache model
(see Section 5.1.3). Let access_time be a function, access_time : C → N, which returns
the cache access time. Equation 4.11 defines the execution time operation, TC : C → N.

TC(c) = access_time(c) (4.11)

41

CHAPTER 4. APPROACH

4.3 Cache Hierarchy abstract state

In more complex systems, one cache level is not sufficient to hide the memory access
latency. Therefore, most modern systems use multiple levels of caches. The higher the
level of the cache, the larger the cache. In case of a cache MISS in one level, the request
is propagated to the next cache level1. In case no cache contains the requested memory
address, then the main memory services the request. Every cache level contributes to the
total memory access latencywith an access time. Typically, the higher the cache hierarchy
level, the larger the access time to the cache.
The cache hierarchy analysis assumes that the block size of every level is the same. The
next sections describe the cache semantics and the update, join, and execution time opera-
tions.

4.3.1 Semantics

Let nl be the number of cache levels in the cache hierarchy, the hierarchy consists of
different levels of caches. A cache level can be unified or separate, i.e. the instruction and
the data caches share the same cache or different, respectively. The representation of a
cache level in the cache hierarchy analysis is the following:

C ′ = (ci, cd) ∨ cu, with ci, cd, cu ∈ C

Equation 4.12 defines the cache hierarchy for unified or separate caches. Equation 4.13
defines a simplified version, that does not distinguish between unified and separate caches.

H = {(c1, c2, ..., cnl) | ∀i ∈ [1, nl], ci ∈ C ′} (4.12)

H = {(c1, c2, ..., cnl) | ∀i ∈ [1, nl], ci ∈ C} (4.13)

For simplicity reasons, the rest parts of this section and chapter use the simplified cache
hierarchy type of Equation 4.13. This definition does not consider the case of non-unified
instruction and data caches. This simplification does not affect the actual operations be-
cause the instruction and the data operations are independent.

4.3.2 Update

The cache hierarchy update operation updates all caches until the level where the re-
quested memory address resides. All the subsequent caches remain unchanged. The cache
hierarchy update updates the caches by applying the cache update operation (see Equation

1Often the memory request is propagated simultaneously to all cache levels and the memory to hide the
memory access latency.

42

4.4. PIPELINE ABSTRACT STATE

4.6). In case that the requested memory address is not present in any cache, the cache hier-
archy update function updates all caches. Equation 4.14 defines the cache hierarchy update
operation, Uh : H ×B → H .

Uh(h, b) =

(ci ← Uc(h[i], b), | i ≤ j,
ci ← h[i] | i > j), (∃j ≤ nl, b ∈ cset(h[j], b))∧

(∀k < j, b /∈ cset(h[k], b))

(ci ← Uc(h[i], b)), otherwise

(4.14)

4.3.3 Join
The join operation of a cache hierarchy abstract state applies the cache join operation to
each cache level. Equation 4.15 defines the join operation Jh : H ×H → H .

Jh(h1, h2) = (ci ← Jc(h1[i], h2[i])|∀i ∈ [0, l)) (4.15)

4.3.4 Execution Time
Each access to a cache level contributes to the total WCET. The total execution time is the
sum of all cache access times. This definition assumes that the access time of each cache
is independent. Let cache_set : C × B → P(L) be a function that returns a of cache
lines, ls ∈ P(L), that corresponds to the requested block, b. Equation 4.16 defines the
execution time contribution of a memory operation that requests address m, given a cache
hierarchy, h.

Th(h, b) =

j∑

i=1
T (h[i]), ∃j ≤ nl, b ∈ cache_set(h[j], b)

nl∑
i=1
T (h[i]) + Nm, otherwise

(4.16)

4.4 Pipeline abstract state
The purpose of this section is to describe the pipeline analysis by describing the pipeline
properties and defining the operations of the abstract pipeline state. The first subsec-
tion gives an overall description of the pipeline model, whereas the second subsection
describes the abstract pipeline semantics.

4.4.1 Pipeline Definition
Most modern processors use instruction pipelining to exploit instruction level parallelism.
A pipeline aims at reducing the latency of each instruction by dividing the instruction ex-
ecution path into shorter units, called pipeline stages. Different instructions reside in
consecutive pipeline stages at every cycle. For optimal performance, each pipeline stage

43

CHAPTER 4. APPROACH

should be completely independent. However, most pipelines exhibit dependencies be-
tween different pipeline stages. These dependencies, called hazards, reduce the full capa-
bility of the pipeline.
The purpose of this pipeline analysis is to model a simple 5-stage RISC pipeline. The ab-
stract pipeline model is not hardware specific and uses resource-usage patterns for model-
ing the pipeline dependencies. The model of the pipeline is a 5-stage RISC-based pipeline,
with the following stages: Instruction Fetch (F), Instruction Decode (D), Execute (E), Mem-
ory (M), and Write Back (W).

Hazards

There are three main types of hazards in a classic RISC pipeline: data hazards, control
hazards, and structural hazards [23]. Data hazards occur when an instruction uses the
result of a preceding instruction. The waiting instruction stalls the pipeline while waiting
for the result of the previous instruction. Control hazards happen when the address of the
next instruction depends on the result of a previous instruction. This hazard appears in
branch instructions. For dealing with control hazards, processors implement techniques,
such as branch prediction or the so-called delay slot. Branch prediction selects one of
the two branches based on different methodologies and continues the execution using
the predicted destination. In case the prediction was wrong, the pipeline has to flushes
all executed instruction and fetch the correct destination. The branch delay slot refers to
the introduction of an instruction that follows the branch instruction. The execution and
completion of this instruction does not depend on the branch destination. The MIPS32®
ISA uses delay slot. So, this analysis implements delay slot. Finally, structural hazards
occur when different pipeline stages use the same resources. The following paragraphs
describe the hazards of this pipeline analysis.

Data Hazards: Data hazards happen when an instruction depends on the outputs from
previous instructions. Usually, the outputs of an instruction are already available at the
end of either the Execute (E) stage or the Memory (M) stage. The dependent instruction
requires the input data at the beginning of the Execute (E) stage or, in special cases, at the
beginning of the Decode (D) stage.
The number of cycles of the Execute (E) stage differs for different instructions. In the cases
that the number of cycles in the execution stage is larger than one, the model assumes
that the instruction occupies the Execute (E) stage until the completion of the execution
stage. That assumption is conservative because some instructions, such as DIV andMULT,
execute in independent units that include separate pipelines. However, this is the behavior
of the pipeline in the worst case, i.e. when the next instruction depends on the output of
one of the instructions that use an independent execution unit.
This pipeline analysis implements operand forwarding, i.e. the delivery of the dependent
operands to the requesting stage when the dependent operands are available. Operand
forwarding eliminates all data hazards except for two cases. The first case occurs when
an instruction requires as input the result of a preceding memory load operation, e.g. a

44

4.4. PIPELINE ABSTRACT STATE

lw instruction (see Figure 4.3b). In this case, the result of the load instruction is not ready
before the end of the Memory (M) stage. Therefore, the instruction that depends on this
result cannot proceed to the Execute (E) stage, but instead stalls until the result is available.
The second case occurs in branch instructions, i.e. the branch decision depends on the
result of a preceding instruction. Depending on the instruction, the result is ready at the
end of the Execute (E) stage or at the end of the Memory (M) stage. However, the operand
comparison and the branch destination calculation is performed at the Instruction Decode
(D) stage, so that the branch destination instruction is known and ready for execution after
the delay slot. To resolve this case, the branch stalls until the dependent operator is ready2.
Figure 4.3c shows the effect of such a case on the pipeline.

Control Hazards: Control hazards occurwhen the next instruction address is not known.
The second stage of the pipeline, i.e. Instruction Decode (D) stage, implements both the
calculation of the target address and the branch decision. So, the pipeline knows the des-
tination address and, hence, the next instruction to fetch at the end of the D stage. This
means that the next instruction is available at the end of the D stage, introducing an one-
cycle delay. However, the delay-slot hides this one-cycle delay. Hence, the pipeline does
not display any control hazard.

Structural Hazards: Structural hazards occur when two different pipeline stages share
the same resource. This analysis assumes the presence of one bus for both data and in-
structions. For example, when a miss occurs in the Instruction Fetch (F) stage of an in-
struction and the previous instruction accesses the memory at the M stage, the memory
transactions are serialized, and, thus, the pipeline stalls. Figure 4.3d illustrates this hazard.

4.4.2 Pipeline Abstract Semantics

A pipeline state, ps, consists of the five values representing the five pipeline stages. Each
value represents the stage-release cycles, i.e. the number of relative cycles after which
each stage is free. The stage-release cycles are normalized because the pipeline uses stalls
and is not speculative. Additionally, the pipeline contains the destination register of the
previous instruction, rd (or rt), and the time its result is ready trd.
The representation of the pipeline is the following:

ps = ([tF , tD, tE , tM , tW], (rd, trd)), with tW ≥ tM ≥ tE ≥ tD ≥ tF (4.17)

The update state includes the destination register, rd, in the case that the instruction is
a memory read operation. The instruction following the memory operation stalls when
the some of the source registers is equal to the destination register of the previous read

2 This case does not occur in some hardware implementations that merge the Decode (D) and the Execute
(E) stage, for example the PIC32MX3XX/4XX family [40].

45

CHAPTER 4. APPROACH

F D E M W…

F D E M Wlw $t0, 0($t1)

F D E E E E E M Wl1 $t2, 0($t3)

(a) Pipeline without dependencies or hazards. In
case a stage is not able to complete in one cycle, the
pipeline stalls and the next instruction cannot enter
the delayed stage.

F D E M W…

F D E M Wlw $t0,100($t2)

F D D E M Wadd $t3,$t0,$t1

(b) Pipeline RAW dependency. The in-
struction following a memory load re-
quires the memory result at the beginning
of the execution stage (E). However, this
result is available at the end of the mem-
ory stage of the load instruction. This re-
sults in a data RAW hazard.

F D E M W…

F D E M Wslti $t0, $t1, $t2

F F D E M Wbeq $t0, $t3, next

(c) Pipeline RAW dependency. The in-
struction preceding a branch instruction
calculates one of the operands. This
operand is available at the end of the ex-
ecution staget (E). The branch instruction
needs this result at the beginning of the
instruction decode (D) stage because that
is when the branch result is calculated.

F D E M W…

F D E E E E M W0x8..2C: lw $t0,0($t2)

F D E E E E M W0x8..30: addi $t3,$t4,4

(d) Structural hazard for memory accesses. This model as-
sumed serialized memory accesses and an instruciton miss (ad-
dress 0x8…30) causes all the shared-memory misses that over-
lap the instruction miss penalty to stall. In this example, the
memory operation results in a miss as well.

Figure 4.3: Pipeline hazards that are implemented for theWCET analysis for MIPS32® ISA. F,D, E,
M, andW correspond to the five pipeline stages, i.e. instruction fetch, instruction decode, execute,
memory, and write back. The bubbles (clouds) represent the cycles during which the processor
stalls.

memory instruction. The update state includes also one or two source registers, rt and
rs, depending on the instruction type. The update state has the following form:

dps = ([dtF , dtD, dtE , dtM , dtW], (rd, rt, rs)) (4.18)

4.4.3 Update

The pipeline update function updates a pipeline state ps using the update state (see Equa-
tion 4.18) that corresponds to the new instruction. The order of the calculation is impor-
tant because each pipeline stage depends on the previous pipeline stage. Equation 4.19

46

4.5. MULTIPROCESSOR ANALYSIS

defines the pipeline update function.

Ups(ps, dps) =

(tF ← max(ps(tD), ps(tF) + dps(tF)),
tD ← max(ps(tE), tF + dps(tD)),
tE ← max(ps(tM), tD + dps(tE)),
tM ← max(ps(tW), tE + dps(tM)),
tW ← tM + dps(tW),
rd← (dps(rd), tM)), dps(rt) ̸= ps(rd) ∧ dps(rs) ̸= ps(rd)

(tF ← max(ps(tD), ps(tF) + dps(tF)),
tD ← max(ps(tE), tF + dps(tD), ps(trd)),
tE ← max(ps(tM), tD + dps(tE)),
tM ← max(ps(tW), tE + dps(tM)),
tW ← tM + dps(tW),
rd← (dps(rd), tM)), dps(rt) = ps(rd) ∨ dps(rs) = ps(rd)

(4.19)

Finally, the resulted pipeline state is normalized as shown in Equation 4.20.

U(ps, dps) = Ups(ps, dps)− ps(tF) (4.20)

4.4.4 Join

Equation 4.21 defines the pipeline join function of is the following:

Jps(ps1, ps2) =

(tF ← max(ps1(tF), ps2(tF)),
tD ← max(ps1(tD), ps2(tD)),
tE ← max(ps1(tE), ps2(tE)),
tM ← max(ps1(tM), ps2(tM)),
tW ← max(ps1(tW), ps2(tW)),
rd← ps1(rd) ∨ ps2(rd))

(4.21)

4.4.5 Execution Time

Each instruction contributes to the total WCET. Equation 4.22 defines the number of con-
tributed cycles. The analysis calculates the contribution of the pipeline to the execution
time before the normalization in Equation 4.20.

Tp(ps, dps) = Ups(ps, dps)(tW)− ps(tW) (4.22)

4.5 Multiprocessor Analysis
This section describes the multiprocessor approach that estimates the WCET of a task
running in a multiprocessor system. This analysis estimates the WCET of a tasks that
runs in a system under the presence of temporally and spatially interfering tasks. The
analysis concerns symmetric multiprocessor (SMP) systems and models the MESI protocol
(see Section 3.5) for maintaining cache coherency. Also, the analysis assumes that the

47

CHAPTER 4. APPROACH

Stage 1 Stage 2

t1 AE - Recording

t2 AE - Recording

...

tn AE - Recording

t1, mm1

∪
t2, mm2

tn, mmn

WCET (t1|t2, t3, ..., tn)WCET Analysis

Figure 4.4: WCET Analysis for task t1, when n tasks are temporally interfering on a symmetric
shared-memory multiprocessing system. The analysis consists of two phases. The first phase uses
abstract execution to record and extract the memory-access footprint of each task. The second
phase estimates the WCET using the memory-access footprints of all the temporal interfering
tasks.

cache hierarchy is inclusive, i.e. that each cache level is a subset of all higher cache levels.
The cache block size is equal for all cache levels.
The multiprocessor analysis takes as inputs the task to analyze and a set of interfering
tasks and proceeds in two stages. Both stages make use of the single-core cache-based
analysis. The first stage analyzes each temporally interfering task, separately using the
single-core analysis of KTA. In this stage, the analysis is not complete, as it only records
the memory transactions of each task. The next stage uses these recordings to perform
the WCET analysis on the target task.
The following parts describe the multiprocessor analysis methodology and the enhance-
ments to the single-core analysis. The first subsection describes the methodology and
assumptions, and the second redefines some of the single-core analysis operations for
estimating the WCET.

4.5.1 Methodology

The multiprocessor analysis uses the single-core analysis for estimating the WCET of a
task running on a SMP system. Figure 4.4 illustrates the main methodology of the multi-
processor analysis that consists of two stages.
In the first stage of the multiprocessor analysis, KTA analyzes all the spatially and tem-
porally interfering tasks and performs a modified analysis on each of them. The modified
analysis is a slightly modified version of the runtime analysis of KTA (see Section 3.1.1).
This stage of the multiprocessor analysis performs a complete abstract execution analysis
that records the memory accesses of each of the interfering tasks. The memory record-
ings consist of the block addresses that the task accesses throughout its execution. For
each of the accessed block addresses, the analysis records the number of read and write
operations, separately. This stage passes the recorded information to the second stage.

48

4.5. MULTIPROCESSOR ANALYSIS

The second stage uses the memory recordings of all the interfering tasks to modify the
analysis of the target task. First, the analysis merges all the accesses of the tasks excluding
the target task. This merge adds the number of the reads and the writes of all tasks for
each memory address. Together with the merge, the analysis calculates the overhead of
each memory read or write to a shared block, i.e. a block accessed by other temporally
interfering tasks. The calculation of the overheads is based on the MESI protocol. Table
4.1 shows the modeled behavior of the analysis under a read and a write. In particular,
there are three different cases for each memory block. These cases are: no remote access,
only remote read, and remote write. The latter, i.e. remote write, includes the case of both
read and write accesses. In addition to the adjusting penalties for memory accesses, the
analysis takes some additional actions for the memory blocks accessed by remote tasks.
More specifically, the remote tasks affect the replacement priority of each block in the
shared caches. For this reason, the analysis assumes that these blocks are locked to the
lowest priority (most recently used). The actual accesses to these blocks follows the rules
of Table 4.1, however, the analysis assumes that these blocks cover the most recently
used blocks in the worst case. In other words, the analysis excludes these cache lines
completely. During the cache analysis of the task, each remotely accessed block is treated
according to Table 4.1, and the cache analysis ignores the locked blocks that represent the
worst-case most recently used blocks by the remote tasks.

ti, i < N, i ̸= j

tj R W

∅
h′ = h

m′ = m

h′ = h

m′ = m

nr =
k∑

i=0
Ri, k < N

h′
pr = hpr

h′
sh = max(Nc, hsh)

m′ = max(Nc, Nm)

h′
pr = hpr + Ni

h′
sh = max(Nc + Ni, hsh)

m′ = max(Nc + Ni, Nm)
oh = nr ·Nwb

nw =
m∑

i=0
Wi, m < N

h′

m′

}
max(Nc, Nm)

h′

m′

}
max(Nc + Ni, Nm)

oh = nw ·Nwb

Table 4.1: Cache accessmiss and hit overhead due to theMESI coherence protocol. h andm denote
the number of cycles due to a hit and miss, respectively, of the cache for a uni-processor system.
h′ and m′ denote the number of cycles due to hits and misses, respectively, in a multiprocessor
system using MESI. hpr denotes the number of cycles for a hit in a private cache. hsh denotes the
number of cycles for a hit in a shared cache. oh is the total overhead caused by the bus transactions
that force the processor to stall while writing modified data back to the memory, when another
CPU requests it. nr and nw are the total number of reads and writes that the remote tasks perform
on the specific block.

49

CHAPTER 4. APPROACH

System assumptions

This analysismakes some assumptions regarding theMESI protocol implementation. First,
the SMP architecture includes private caches, shared caches, and memory. Cache to cache
transactions are possible when the requested memory address is available in one of the
private cache of the other cores. In the cases that the available cache block is in either E or
M states, the cache that contains it will send the data to the requesting cache. When the
available cache block is in S state, this means that other caches might contain the same
copy. So, in that case, every cache that contains the cache block might send the data to
the requesting core. Which cache will actually send the data depends on the bus priority
scheme [46]. In addition to that, a cache that contains the requested block in M state and
receives a remote request for the specific memory block will write back the block to the
shared memory. Finally, this analysis assumes that each task runs on a dedicated core.

4.5.2 Semantics

The multiprocessor analysis needs to consider the remote tasks. For this reason, there are
two main modifications to the single-core cache-based analysis. The first modification
regards the cache hierarchy. The remotely accessed blocks reserve the most recently used
blocks of all the shared caches. The second modification affects the execution under a
read and a write. The first subsection defines the required mathematical notations. The
subsequent subsections define the modified cache structure and the execution time for the
multiprocessor analysis.

Definitions

Parameter Description
Nc The number of cycles for receiving a block from another cache. The cache that includes

the block in E (exclusive) or M (modified) state sends the data.
Ni The number of cycles for invalidating all the caches that contain an S (shared) block in

their caches.
Nm The number of cycles for receiving the data from the shared memory/cache.
Nwb The number of cycles for writing back a block when an exclusive read is issued on the

bus. That may happen in case when the cache contains a modified block.

Table 4.2: Different parameters that define the different delays due to MESI [23].

The WCET estimation of a task that shares resources with other temporally interfering
tasks consists of two phases. The first phase records the memory block accesses of each
of the time-sharing tasks and provides these recordings to the second phase. The second
phase uses these recordings to handle each memory request according to the protocol.
During the first phase, KTA records reads and writes, separately. Table 4.3 shows the
possible combinations of memory requests, together with the subsequent possible state

50

4.5. MULTIPROCESSOR ANALYSIS

transitions of the MESI protocol. Table 4.1 shows the overhead of a potential cache hit or
miss due to the cache coherence protocol.
Let nt be the total number of spatially and temporally interfering tasks. Let nm = |b|, b ∈
B be the memory size. Let R = {(r, w)|r, w ∈ N∗} be the set of the recorded accesses
that consists of reads and writes. These recondings may be zero or greater. Let Re =
{(r0, ..., ri, ..., rnm)|i ∈ [0, nm), ri ∈ R} be an ordered set of memory accesses that
corresponds to the memory recording of each task. Let T be the set of the spatially and
temporally interfering tasks (see Equation 4.23).

T = {ti|i ∈ [0, nt), ti ∈ Re} (4.23)

Let recr : T × B → N and recw : T × B → N be two functions that take a task
and a memory address as inputs and return the number of recorded reads and writes,
respectively. Function private : H → H takes a cache hierarchy as input and returns a
subset of the input that consists of solely the private caches. Let hblocks : H → P(B)
be a function that takes a cache hierarchy as an input and returns the set of all block
addresses that the cache hierarchy contains.

4.5.3 Cache Hierarchy

The cache hierarchy takes into consideration the case when the activity of remote tasks
can replace blocks that only the target task accesses. To achieve that, the cache hierarchy
locks or reserves the most recently used lines of each set of all shared caches. The number
of reserved cache lines is equal to the non-shared blocks that the remote tasks access.
Functions update_set, update_cache, and update_hcache update the lines in a set, a
cache, and a cache hierarchy. Function update_hcache : H ×Re→ H updates the hier-
archy for the multiprocessor analysis by applying function update_cache : C×Re→ C ,
which, in its turn, calls update_set : S×P(R)→ S. Let rec_set : Re×N→ P(R) be a
function that takes as inputs a recording and a set number, and returns the set of record-
ings that contain the recordings that correspond to the set number. It is: rec_set(r, i) =
{r[b]|∀b ∈ [0, nm), (b = set(i)) ∧ (recr(r, b) + recw(r, b) ̸= 0)}. Equations 4.24, 4.25,
and 4.26 define the update functions.

update_set(s, rs) =
{

(li ← ⊥ |i < j,
li ← s[i] |i ≥ j), j = |rs|

(4.24)

update_cache(c, r) =
{

(si ← update_set(c[i], rs)| rs = rec_set(r, i)) (4.25)

update_hcache(h, r) =
{

(ci ← update_cache(h[i], r) |∀i ∈ [1, nl], h[i] /∈ private(h),
ci ← h[i] |∀i ∈ [1, nl], h[i] ∈ private(h)) (4.26)

51

CHAPTER 4. APPROACH

4.5.4 Execution Time
Equation 4.27 defines the execution time Thr : H × B × T × Re → N under a read
operation. Similarly, equation 4.28 defines the execution time Thw : H×B×T×Re→ N
under a write operation.

Thr (h, b, t, tj) =

Th(h, b), ∀ti ∈ t− {tj}, recr(ti, b) = 0, recw(ti, b) = 0
Th(hpr, b), (∀ti ∈ t− {tj}, recw(ti, b) = 0)∧

(∃ti ∈ t− {tj}, recr(ti, b) ̸= 0)∧
(hpr = private(h)) ∧ (b ∈ hblocks(hpr))

max(Th(h, b), NC), otherwise

(4.27)

Thw(h, b, t, tj) =

Th(h, b), ∀ti ∈ t− {tj}, recr(ti, b) = 0, recw(ti, b) = 0
Th(hpr, b)+Ni, (∀ti ∈ t− {tj}, recw(ti, b) = 0)∧

(∃ti ∈ t− {tj}, recr(ti, b) ̸= 0)∧
(hpr = private(h)) ∧ (b ∈ hblocks(hpr))

max(Th(h, b), NC +Ni), otherwise

(4.28)

Write-back overhead Themulti-coreWCET analysis treats every memory access differ-
ently. For every memory access, the analysis checks whether other temporally interfering
tasks access the same address during their execution. In particular, if the target task writes
to a shared address, then a remote task might request it. Hence, at some point in time, the
target task has to write back the modified data to the memory. Two quantities limit the
number of write-backs. These quantities are (1) the number of the remote accesses to that
block and (2) the number of writes of the target task. Equation 4.29 defines this additional
overhead.

Toh(rec, t, j) =
∑
b∈B

Nwb ·min

 ∑
i∈[0,j)∩(j,nt)

(recw(tj , b) + recr(tj , b)) , recw(t[j], b)

 (4.29)

4.6 Limitations
The following points describe briefly the limitations of this approach.

• The hardware analysis is targeting specific hardware implementing the MIPS32®
architecture and extending it to support other architectures and platforms might be
cumbersome.

• The current analysis does not consider timing anomalies. These phenomena occur
when a local worst case does not necessarily imply a global worst case, e.g. out-of-
order execution. In the presence of timing anomalies, the analysis cannot involve
greedy methods.

• The analysis focuses on integer arithmetic and does therefore not support floating
point operations.

52

4.6. LIMITATIONS

• There are limitations in the supported instructions. As for now, the analysis does
not support indirect jumps.

• There is a limitation in the coding paradigms that the current implementation of
KTA is able to analyze. This abstract domain uses a non-relational representation
of the program variables and memory content, so that the analysis does not encode
complex information about the relations between variables. KTA encodes only spe-
cific relations using patters.

• The multiprocessor analysis assumes that the bus is ideal and that there are no read
and write queues. That means that the overhead of a memory operation is constant
regardless of the number of tasks and the current bus traffic. To deal with that, the
analysis uses conservative approximations of the overheads.

ti

t R R/W W

∅ - - -

k · R, k ≤ i
I → E : Nm

I → S : Nc

|Nm

E → S : −

I → E : Nm

I → M : Nm

I → S : Nc

|Nm

M → S : Nwb

E → S : −
E → M : −
S → M : Ni

I → M : Nm

S → M : Ni

M → S : Nwb

k · R, k ≤ i
m · W, m ≤ i

I → S : Nc

I → E : Nm

S → I : −
E → I : −
E → S : −

I → S : Nc

I → E : Nm

I → M : Nc + Ni

|Nm

M → I : Nwb

M → S : Nwb

E → I : −
E → S : Nwb

E → M : −
S → I : −
S → M : Ni

I → M : Nc + Ni

|Nm

M → I : Nwb

M → S : Nwb

S → I : −
S → M : Ni

m · W, m ≤ i
I → S : Nc

I → E : Nm

S → I : −
E → I : −

I → S : Nc

I → E : Nm

I → M : Nc + Ni

|Nm

M → I : Nwb

E → I : −
E → M : −
S → I : −
S → M : Ni

I → M : Nc + Ni

|Nm

M → I : Nwb

Table 4.3: Cache access miss and hit overhead due to the MESI snooping coherence protocol.
h and m denote the hit and miss time of the cache for a uni-processor system. oh denotes the
overhead of the processor for writing back the data that the same processor modifies (writes) due
to memory read or write requests by other processors. The number of the remote reads and writes
and the number of the local writes limit that overhead oh.

53

CHAPTER 4. APPROACH

• The analysis supports only symmetric multiprocessor (SMP) systems that use MESI
to maintain cache coherence.

• The approach uses the assumption that the cache hierarchy is inclusive, i.e. every
cache is a subset of all higher level caches. Also, all cache levels have equal block
size.

54

Chapter 5

Implementation

This chapter describes the implementation of the approach of this thesis. The implemen-
tation includes the cache, the cache hierarchy, and the pipeline states that constitute the
low-level analysis, the IC abstract domain, and finally, the multiprocessor analysis. In ad-
dition to these, the last section presents some additional implementations that complete a
fewmissing parts of KTA. All parts of the implementation are part of the runtime analysis
of KTA. This chapter presents only the basic parts of the KTA implementation, therefore,
the description of the KTA implementation in Section 3.1 might be necessary for com-
prehending the following sections. The following sections describes the implementation
of this thesis that incorporates the IC abstract domain, the low-level analysis, and the
multiprocessor analysis into KTA.

5.1 Implementation

This section describes the implementation of this approach that integrates different parts
to KTA. First, the integrated parts to the single-core analysis and second, the multi-core
analysis.

5.1.1 Single-Core Analysis

Some parts of the implementation integrate some additional functionality to the single-
core analysis. The implementation of the IC abstract domain currently replaces the inter-
val domain by implementing the abstract domain interface of KTA. Figure 5.1 depicts a
high level diagram of the single-core analysis of KTA. The dotted area denotes the part of
the contribution of this thesis. This includes minor contributions to the AE implementa-
tion, such as modifications to the program state, adding missing instruction, and changes
to the branch pattern.
The low-level analysis incorporates the cache state, the cache hierarchy state, and the
pipeline state to the program state. Listing 5.1 defines the pstate. It consist of the register
file reg, the memory hierarchy hmem that includes the cache hierarchy and the mem-

55

CHAPTER 5. IMPLEMENTATION

KTA

mcb32-gcc

.elf

#incl

decode CPS

Runtime Analysis

AE

Mem

Interv IC

Cache

CH

Pipeline

WCET

Figure 5.1: A high level diagram of the KTA tool methodology forWCET estimation. The diagram
does not include the optimization step. The dotted curve denotes the contributions of this thesis.
The changes to the AE are minor and include modifying the program state, the implementation of
missing instructions, and some changes to the branch patterns.

ory, the pipeline pipeline, the bcet and the wcet of the spliter_set that is necessary for the
optimization step.

type p r o g s t a t e = {
reg : a r e g i s t e r ;
hmem : amemhierarchy ; (* Memory h i e r a r c h y s t a t e *)
p i p e l i n e : a p i p e l i n e ; (* P i p e l i n e s t a t e *)
b c e t : i n t ;
wcet : i n t ;
i n p u t _ s e t : s p l i t e r l i s t ;

}

Listing 5.1: The program state of KTA.

5.1.2 IC Abstract Domain
The code that implements the IC abstract domain resides in “run-
time/aint32congruence.ml”. The KTA value domain template defines an interface
for manipulating the abstract values. The interface defines a type for the abstract domain,
the abstract function, and the join function. Branch operations are special because they
result in new splitted abstract values.
The following code snippet illustrates the function that corresponds to the addition of two
IC values.

type i n t e r v a l = (low * s t e p * num)
. . . .
l e t a i n t 3 2_ add v1 v2 =

a i n t 3 2 _ b i nop (fun (l 1 , s1 , n1) (l 2 , s2 , n2) −>

56

5.1. IMPLEMENTATION

l e t h1 = high l 1 s1 n1 in
l e t h2 = high l 2 s2 n2 in
l e t l = l 1 + l 2 in
l e t s = gcd s1 s2 in
l e t h = h1 + h2 in
l e t n = number h l s in
l e t s = i f n = 1 then 0 e l s e s in

i f l < lowva l | | h> h i ghva l then r a i s e AnyExcept ion
e l s e (l , s , n)

) v1 v2

5.1.3 Cache State

The cache state is part of the memory hierarchy state. The initial configuration for the
cache is part of the CPU model that resides in “runtime/cpumodel.ml”. Listing 5.2 shows
an example that models the memory model of Creator ci40 [11].

l e t cache_model =
[S (

(* I c a c h e *)
{ a s s o c = 4 ; s i z e = 3 2 7 6 8 ;

word_s i ze = 4 ; b l o c k _ s i z e = 3 2 ;
w r i t e _ a l l o c a t e = t r u e ; wr i t e _back = t r u e ;
h i t _ t im e = 1 ;
sha red = f a l s e ;

} ,
(* Dcache *)
{ a s s o c = 4 ; s i z e = 3 2 7 6 8 ; (* 1 l s l 15 *)

word_s i ze = 4 ; b l o c k _ s i z e = 3 2 ;
w r i t e _ a l l o c a t e = t r u e ; wr i t e _back = t r u e ;
h i t _ t im e = 2 ;
sha red = f a l s e ; }) ;

(* L2 *)
U ({ a s s o c = 8 ; s i z e = 1 l s l 1 9 ;

word_s i ze = 4 ; b l o c k _ s i z e = 3 2 ;
w r i t e _ a l l o c a t e = t r u e ; wr i t e _back = t r u e ;
h i t _ t im e = 10−2;
sha red = t r u e ;

}) ;
]

Listing 5.2: Memory model of the Creator ci40 [11] board.
Listing 5.4 shows the definition of the cache state. Set and Cache are OCamlMapmodules.

type a s e t _ t = (l r u * d i r t y * i n v a l i d) S e t . t

type acache = {
cache : a s e t _ t Cache . t ;

57

CHAPTER 5. IMPLEMENTATION

c a c h e i n f o : a c a c h e _ i n f o _ t ;

s e t i n f o : i n f o _ t ;
word in fo : i n f o _ t ;
b y t e i n f o : i n f o _ t ;

d i s a b l e d : boo l ;

c a c h e _ s t a t s : c a c h e _ s t a t s _ t ;
}

Listing 5.3: Cache state definition.

5.1.4 Cache Hierarchy State

The cache hierarchy state is part of the memory hierarchy state of the program state. The
memory hierarchy consists of the cache hierarchy and the memory.

pstate

•areg
•hmem
•pipeline
•bcet
•wcet
•input_set

Listing 5.4 shows the data structures of the cache hierarchy. The cache hierarchy state
models the cache hierarchy, as a list of caches (Line 5). Each cache level, cache_t, consists
of either a unified cache or a separate cache consisting of a instruction and a data cache
(Lines 1-3). Finally, Lines 7-11 define the memory hierarchy, amemhierarchy, contains
the memory, amemory and the cache hierarchy cache_hierarchy_t.

1 type c a che_ t =
2 | Uni of acache
3 | Sep of acache * acache
4
5 type c a c h e _h i e r a r c hy _ t = c a che_ t l i s t
6
7 type amemhierarchy = {
8 mem : amemory ;
9 cache : c a c h e _h i e r a r c h y _ t ;

10 }

Listing 5.4: Cache hierarchy state definition.

58

5.1. IMPLEMENTATION

5.1.5 Pipeline State
The pipeline state is part of the program state.

pstate

•areg
•hmem
•pipeline
•bcet
•wcet
•input_set

The pipeline state consists of the stage release times for each stage and the dependencies.
Listing 5.5 shows the data structures of the pipeline analysis. Line 11 defines the abstract
pipeline state that is part of the program state. Line 1 defines the pipeline state as a
tuple of 5 stages. The pipeline analysis uses dependency patterns to model the hazards.
The hazards correspond to branch instructions and memory read (Lines 4 and 5). Line 9
defines the dependency type that contains the instruction that precedes the current state
and the stage after which the specific stage is ready.

1 type a p i p e l i n e _ t = f _ s t a g e * d_ s t a g e * e _ s t a g e * m_stage * w_stage
2
3 type i n s t r u c t i o n _ t y p e =
4 | Mem of r e g i s t e r s op t i on * r e g i s t e r s op t i on * r e g i s t e r s op t i on
5 | Br of r e g i s t e r s op t i on * r e g i s t e r s op t i on
6 | ND of r e g i s t e r s op t i on * r e g i s t e r s op t i on
7 * r e g i s t e r s op t i on * r e g i s t e r s op t i on
8
9 type dependency_t = i n s t r u c t i o n _ t y p e * s t a g e _ r e a dy

10
11 type a p i p e l i n e = a p i p e l i n e _ t * dependency_t op t i on

Listing 5.5: The abstract pipeline type definitions. The abstract pipeline state apipeline is part
of the pstate.

5.1.6 Multiprocessor Analysis
Figure 5.2 depicts the multiprocessor analysis method. For the multiprocessor analysis,
KTA receives as inputs the target task, i.e. the task to analyze, and a number of temporally
interfering tasks. Each task uses one dedicated core. The first stage (Stage I) records the
memory accesses for all tasks, and the second stage (Stage II) uses the recordings of the
first stage to derive the WCET of the target task.

59

CHAPTER 5. IMPLEMENTATION

KTA

mcb32-gcc

.elf

#incl

decode

CPS0 RA0

CPS1 RA1

… …

CPSn RAn−1

RA

mem map
mem map

mem map

Stage IIStage I

W CETi|i∈[0,n)

Figure 5.2: Themultiprocessor analysis method consists of two phases; the first records the mem-
ory behavior of each of the tasks and the second analyzes the target task, using the information
of the previous stage.

60

Chapter 6

Evaluation

The evaluation of the approach of this thesis consists of three parts. The first part of the
evaluation concerns the expressiveness of the KTA tool, which gives an indication of the
expressiveness of the abstract domain. The second part focuses on the evaluation of the
single-core cache-based analysis, and the third part concerns the evaluation of the multi-
core analysis methodology.
This evaluation aims at examining the research question that consists of two parts: (1)
evaluating the feasibility of the KTA tool using a low-level hardware timing model and
(2) designing and implementing of the multiprocessor analysis approach by extending the
single-core approach. The two first parts of this evaluation deal with the first research
question by comparing KTA with SWEET, a well-known timing analysis tool, with re-
gards to coverage and analysis performance. Further comparisons attempt to evaluate the
implemented low-analysis. The last part of the evaluation deals with the second research
question and attempts to verify the approach and evaluate the result of the multiprocessor
analysis.
The first section of this chapter provides a description of the Experimental Setup parame-
ters that apply to all the Evaluation parts. The following sections describe the three eval-
uation parts: (1) Expressiveness Evaluation, (2) Single-Core Cache Analysis Evaluation,
and (3) Multi-Core Cache-based Analysis Evaluation.

6.1 General Experimental Setup

The compilation of all benchmarks and tools, as well as KTA, is performed on an Intel®
Core™ i5-6500T CPU, at 2.50GHz, with 8GB RAM, running Ubuntu GNU/Linux, Release
16.04, with Linux Kernel, 4.4.0-91-generic. KTA is compiled with the OCaml compiler1,
version 4.02.3. For the first part of the evaluation, KTA invokes mcb32-gcc2, a MIPS32®
cross-compiler. However, in the two last parts of the evaluation, KTA uses the mips-

1OCaml compiler framework: https://ocaml.org/
2MCB32 Toolchain: https://github.com/is1200-example-projects/mcb32tools

61

https://ocaml.org/
https://github.com/is1200-example-projects/mcb32tools

CHAPTER 6. EVALUATION

mti-elf toolchain3 because mbc32-gcc does currently not support the third revision of the
MIPS32® architecture that the testing hardware, i.e. Creator ci40, implements.

6.1.1 Benchmarks

The evaluation of the first two parts, namely the Expressiveness and Single-core cache eval-
uation, uses the Mälardalen benchmark suite4. The Mälardalen benchmark suite is a col-
lection of benchmarks targeting embedded real-time applications and is widely used for
evaluatingWCET analysis tools and applications. Table B.1 lists all the benchmarks of the
Mälardalen benchmark suite, together with additional information, such as whether the
benchmark uses floating-point numbers. Also, Table B.1 describes some known problems
that appear during the compilation or analysis of SWEET and KTA. SWEdish Execution
Time analysis tool (SWEET) is an open source timing analysis tool that derives flow in-
formation (flow facts) from a program [43]. SWEET uses an intermediate representation,
namely the ARTIST2 Language for WCET Flow Analysis (ALF) language [21]. The Expres-
siveness Evaluation section discusses the content of this table in more detail (see Section
6.2).
A more recent selection of benchmarks for embedded real-time applications is the TACLe
benchmark suite5. The TACLe suite contains a wider range of selected benchmarks for
real-time systems. However, due to time limitations, this part has not been investigated
yet. In the future, there is a plan to replacing the Mälardalen benchmarks to the TACLe
benchmarks for a more throughout evaluation (see Future Work, Section 7.2).

6.1.2 Execution on hardware

Two parts of the evaluation, namely the Single-core Cache-based Analysis Evaluation in
Section 6.3 and the Multi-core Cache-based Analysis Evaluation in Section 6.4, compare
the result of the WCET analysis with actual hardware execution cycles. These parts use
the Creator Ci40 IoT Hub board and compare the CPU cycles with the KTA analysis re-
sult [11]. This board has a cXT200 system-on-chip (SoC) [11], implementing a dual core
multithreading MIPS32® 550Mhz interAptiv™ processor interAptiv core [24] with level 1
and level 2 caches.
The cache-based analysis evaluation activates only one core and one thread, so that the
system behaves as a single-core machine with two levels of caches. The aim of this part
is to evaluate the tightness of the cache-based analysis.
The multi-core analysis evaluation activates two threads, one on each core, so that the
system behaves as a dual core SMP with a level 1 private cache and a level 2 shared cache.

3MIPS32 Baremetal Toolchain: https://community.imgtec.com/developers/mips/tools/
codescape-mips-sdk/download-codescape-mips-sdk-essentials/

4 WCET benchmarks: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
5 TACLe: http://www.tacle.eu/index.php/activities/taclebench

62

https://community.imgtec.com/developers/mips/tools/codescape-mips-sdk/download-codescape-mips-sdk-essentials/
https://community.imgtec.com/developers/mips/tools/codescape-mips-sdk/download-codescape-mips-sdk-essentials/
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.tacle.eu/index.php/activities/taclebench

6.1. GENERAL EXPERIMENTAL SETUP

6.1.3 Analysis Termination Methods
The WCET analysis of KTA cannot guarantee finite analysis time, nor finite memory uti-
lization. Therefore, there is a requirement to limit either of them, or both. The evaluation
uses three methods for restricting the time and memory resources of the analysis.

KTA parameter -max-cycles:
KTA provides a command line option -max-cycles that sets themaximumnumber of cycles
that a path may reach. The default value is 100,000,000. In the following example, KTA
runs the analysis of the binary_search function of the bs.c benchmark with maximum
number of cycles set to 100,000.

$ k t a wcet bs . c b i n a r y _ s e a r c h −max_cyc les 100000

However, the restriction of the longest path does not automatically limit the memory
utilization, which can grow fast. For example, there are cases, where the analysis splits
continuously to new paths with no path reaching the maximum cycles limit. Then, the
analysis might exhaust the RAM, and, on a linux system, KTA starts utilizing the swap
memory, which is much slower. That way, the time-based measurements are not uni-
form, and the analysis can take long time to terminate (when it reaches the maximum
cycles limit). Setting a uniform memory limit that is less than the size of the RAM for all
benchmarks, gives a uniform solution for the evaluation.

ulimit command:
In a Unix system, the setrlimit system call can limit the resources that a process is allowed
use. The ulimit shell command is a wrapper around the setrlimit and getrlimit system
calls that can set the limit of the virtual address space that a process and its children may
utilize. In the code below, ulimit sets the memory soft limit to approximately 500MB.
This command precedes the execution of the benchmarks and applies to each and every
benchmark.

$ u l im i t −Sv 500000

timeout command:
The maximum cycles parameter is not available for the other tools, e.g. SWEET. So, in
order to limit the analysis time in a uniformway for all tools, all benchmarks run under the
timeout GNU/Linux command. This command sends a TERM signal (the default option)
to the process, when the execution time of the process exceeds the specified time limit.
In the following command, KTA analyzes the main function of test.elf with a maximum
analysis time of 5 minutes. In case the analysis has not completed after this time limit,
KTA receives a TERM signal and the analysis terminates.

$ t imeou t 5m kta t e s t . e l f main

63

CHAPTER 6. EVALUATION

Both KTA and SWEET terminate upon receiving a TERM signal.

6.1.4 Measuring Time

Analysis time - time command
The expressiveness evaluation uses the analysis time as an evaluation measure, whereas
the single-core cache analysis and the multi-core cache-based analysis compare the KTA
with the actual number of cycles run on the hardware.
The expressiveness evaluation uses the GNU/Linux time command. In that way, the mea-
surement of the analysis time of different tools can be performed in a uniform way. The
time command returns the system utilization time of a command, i.e. the time that a com-
mand occupies the system. In order to reduce the interference of the host system, most
parts of the evaluation repeat the analysis for a number of iterations and calculate the
average time.

$ t ime t imeou t 5m kta t e s t . e l f main

Analysis time - OCaml Sys.time() function
Measuring the impact of the cache analysis on the KTA tool, does not require considering
the compilation time or other parts of the analysis that are similar in the two cases, but
rather the actual analysis time. Hence, the time command is not appropriate, because it
measures the total analysis time, including compiling the source, and is affected by the
host system. For this reason, this part of the evaluation uses the gettimeofday() function
of the Unix OCaml library. The Unix.gettimeofday() function returns the current time in
seconds and has resolution better that 1 second. The current time returns the time since
the 1st of January, 1970. Compared to the Sys.time() OCaml function, Unix.gettimeofday()
has better resolution.
The followingOCaml code snippet shows theUnix.gettimeofday() invocation. Thismethod
returns only the abstract-execution-based analysis time.

l e t _ s t _ t ime = Unix . g e t t imeo f d ay () in
ana l y z e funcname_ bb l o ck s gp_addr mem [] [] 0 ;
p r i n t f ” Time ␣ E l ap s ed : ␣ % f s \ n ” (Sys . g e t t imeo f d ay ()− _ s t _ t ime)

Hardware execution cycles - rdhwr instruction
The parts of the evaluation that compare the result of the WCET analysis with actual
hardware execution cycles make use of the rdhwr instruction. Instruction, “rdhwr rd, $2”,
provides read access to the coprocessor 0 (C0) high resolution counter [24]. The resolution
of the C0 counter is two processor cycles.
The following C preprocessor macro snippet uses rdhwr for measuring the number of
elapsed cycles when calling function func that takes one input, input, and returns a
result in a variable res. When measuring the number of execution cycles of a function,
the measurement code should not measure any instruction or data cache misses or other

64

6.2. EXPRESSIVENESS EVALUATION

delays that are not related to the execution time of the function in question. The .align
x directive aligns the instructions to a 2x-byte boundary. The cache block is 32 bytes. So,
aligning the measurement code ensures that none of the instructions between the first
and the second rdhwr instructions will result in an instruction miss. Also, the code uses
the saved register, $16 to save the result of the processor cycles before calling func to
avoid a memory data access within the measurement code. Because this function call is
not taken care by gcc, all registers that might change during the call are saved to the stack
by PUSH_ALL and retrieved back by POP_ALL.

d e f i n e MEASURE_1_RET (func , input , r e s) { \
asm v o l a t i l e (PUSH_ALL ” \ n \ t \

. a l i g n 5 \ n \ t \
nop \ n \ t \
rdhwr $16 , $2 \ n \ t \
l i $4 , ” # i npu t ” \ n \ t \
nop \ n \ t \
j a l ” # func ” \ n \ t \
move %[r e s] , $2 \ n \ t \
rdhwr %[end] , $2 \ n \ t \
sw $16 ,% [s t a r t] \ n \ t ” \
POP_ALL ” \ n \ t ” \
: [r e s] ”= r ” (r e s) , \
[end] ”= r ” (end) \

: [s t a r t] ”m” (s t a r t)) ; \
}

6.2 Expressiveness Evaluation

Evaluating the expressiveness of the abstract domain requires a comparison measure that
can evaluate the performance of the KTA tool with regards to expressiveness, i.e. the
ability of the tool to perform the analysis and provide a WCET estimation for different
programs. This part of the evaluation concerns the abstract domain design, including all
the enhancements and optimizations. The first part of the expressiveness evaluation com-
pares the hybrid interval and congruence domain with the previous implementation of
the interval domain. The second part compares the current KTA implementation with an-
other WCET tool, namely SWEET [34, 43]. SWEET is a well-known WCET analysis tools
[51], with active contribution to the WCET field. In addition to that, SWEET uses abstract
execution for calculating the WCET, which makes the two tools easier comparable. There
was an initial plan to include more tools to the comparison (such as OTAWA [2]), but due
to both technical reasons and unexpected delays, this was not possible.
This evaluation uses the Mälardalen WCET benchmark suite. Table B.1 presents the
benchmarks that are part of the Mälardalen benchmark suite. Among these benchmarks,
some use floating-point numbers, a feature that KTA currently does not support (see Table
B.1). Therefore, the evaluation does not consider these benchmarks at all. In addition to
that, among the benchmarks, there are known issues for both tools. KTA does not imple-
ment register jump (excluding return to the caller function), so all benchmarks producing

65

CHAPTER 6. EVALUATION

code containing the MIPS32® jr instruction, fail at an early stage. SWEET fails in some
examples due to compiler errors (see Table B.1).
The ability of the three tools to analyze the benchmarks indicates the expressiveness of
the respective tool. In addition to the expressiveness evaluation, i.e. whether a tool is able
to analyze a given benchmark, another evaluation measure is the timing performance, i.e.
how much time the analysis takes to finish. This performance evaluation measures the
time required for the tool to provide the WCET estimation. Neither of the expressiveness
evaluation parts considers the actual WCET result. The reason for that is that the pur-
pose of this comparison is to measure the expressiveness, i.e. whether each tool is able to
return a result, and to compare the two tools using the best response time for each tool.
However, the selection of the configuration parameters, for example the “merge” param-
eter in SWEET and the “batch-size” parameter in KTA, has an impact on the tightness of
the WCET result of the respective tool.

6.2.1 IC Domain - Interval Domain
This part of the evaluation compares the new implemented IC abstract domain, with the
previously implemented abstract domain, i.e. the Interval domain. The comparison of the
Interval and the IC domains uses the Mälardalen benchmark suite.
The next section describes the experimental setup and the following section presents the
results of the evaluation.

Experimental Setup
This part of the evaluation concerns solely KTA. The configuration of KTA is the default,
with the Cache and the Pipeline enabled. The configurable parameters include the maxi-
mum batch size, i.e. the maximum number of program states with the same priority. KTA
can configure the batch size parameter using the “-bs_config” command line optional pa-
rameter. The default value is 4, and the evaluation of the IC Domain uses the default
value. The selection of the batch size for KTA is based on the expressiveness for both
domains. The selection procedure examines only three different values, i.e. 4, 30, and 100.
Among these, batch size 4 does not succeed analyzing the binary_search function of bs.c.
However, 30 and 100 timed out when analyzing fir.c. Because the analysis time increases
when increasing the batch size, the final selected batch size for this evaluation is the de-
fault value, i.e. 4. The input arguments are small intervals and are the same in the case of
both domains.
Restricting the time and memory resources is essential because KTA does not guarantee
termination. The limit of the longest execution path is set to the default value: 100,000,000.
The ulimit command limits the memory utilization to approximately 1GB. In addition to
that, the time command limits the absolute time of for each benchmark to 10 minutes.
The measurement of the elapsed time uses the time command, which returns the total
time during which the analysis occupies the system. The time limit is set to 10 minutes.

u l i m i t −Sv 1000000
t ime t imeou t 10m kta wcet $fname $func \

66

6.2. EXPRESSIVENESS EVALUATION

−b s c on f i g 30 −op t im i z e $ o p t im i z a t i o n

Results and Discussion

Figures 6.1, 6.2, 6.3, and 6.4 present the results of the comparison between the interval
and the IC domains. Each figure corresponds to a different optimization flag. Different
optimization flags result into different code. The following paragraphs discuss the results.

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

ex
pin

t (m
ain

)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
main

)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (k

alle
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

An
al

ys
is

Ti
m

e
(s

)

Interval
IC
Interval Failed
IC Failed

ad
pcm

 (m
ain

)

ad
pcm

 (m
y_c

os)

ad
pcm

 (m
y_s

in)

bs
(bi

na
ry_

sea
rch

)

bso
rt1

00
 (m

ain
)

com
pre

ss
(m

ain
)

cov
er

(m
ain

)

crc
 (ic

rc)

crc
 (m

ain
)

ed
n (

main
)

ex
pin

t (e
xp

int
)

fac
 (fa

c)

fdc
t (m

ain
)

fir
(m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

jfd
cti

nt
(m

ain
)

lcd
nu

m (m
ain

)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

nsi
chn

eu
 (m

ain
)

ns
(m

ain
)

rec
urs

ion
 (fi

b)

sta
tem

ate
 (m

ain
)

ud
3 (

lud
cm

p)

ud
3 (

main
)

ud
 (lu

dcm
p)

ud
 (m

ain
)

0
2

4
6

8
10

12

Expressiveness Evaluation (Interval Domain - IC Domain) (Optimization -O0, -bsconfig 4)

Figure 6.1: IC and Interval Domain for optimization level: -O0. The red bars represent the Interval
and the green bars the IC domain. The height of the bars represents the analysis time in seconds.
The bars with the “/” pattern, represent the benchmarks the failed with an out-of-memory error,
timeout, or compilation error. The plot is divided in two time ranges, i.e. [0,2] and (2, 300].

Optimization Level -O0: In the case of -O0 (see Figure 6.1), the IC domain advance
slightly with regards to expressiveness. The analysis of two benchmarks terminates only
for the IC domain whereas the analysis with the interval domain does not terminate.
These benchmarks are all functions that belong to the “adpcm.c” benchmark and the main
function of “fir.c”.
However, there is a number of benchmarks that fail for both domains. In particular, 9
benchmarks fail for both the Interval and the IC domain. In the case of the binary_search
function of bs.c, the analysis does not terminate when the batch size is 4, but terminates
with larger batch sizes, e.g. bs_config = 30. This happens because binary_search generates
new paths andmerging them produces a more conservative interval. This merged interval
affects the control flow, and the analysis cannot terminate because some subset of the new
conservative interval never terminates. In addition to that, cover.c and lcdnum.c, generate
code that contains a jump register instruction (“jr”), which KTA does not support right
now. Also, the “expint” function of the “expint.c” benchmark produces a division-by-zero

67

CHAPTER 6. EVALUATION

ad
pcm

 (m
y_c

os)

ad
pcm

 (m
y_s

in)

bs
(bi

na
ry_

sea
rch

)

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

crc
 (ic

rc)

crc
 (m

ain
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

ns
(m

ain
)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (fi

b)

rec
urs

ion
 (k

alle
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

An
al

ys
is

Ti
m

e
(s

)

Interval
IC
Interval Failed
IC Failed

ad
pcm

 (m
ain

)

bso
rt1

00
 (m

ain
)

com
pre

ss
(m

ain
)

cov
er

(m
ain

)

ed
n (

main
)

ex
pin

t (e
xp

int
)

fir
(m

ain
)

lcd
nu

m (m
ain

)

nsi
chn

eu
 (m

ain
)

sta
tem

ate
 (m

ain
)

ud
3 (

lud
cm

p)

ud
3 (

main
)

ud
 (lu

dcm
p)

ud
 (m

ain
)

0
1

2
3

4
5

6
7

8

Expressiveness Evaluation (Interval Domain - IC Domain) (Optimization -O1, -bsconfig 4)

Figure 6.2: IC and Interval Domain for optimization level: -O1. The red bars represent the Interval
and the green bars the IC domain. The height of the bars represents the analysis time in seconds.
The bars with the “/” pattern, represent the benchmarks the failed with an out-of-memory error,
timeout, or compilation error. The plot is divided in two time ranges, i.e. [0,2] and (2, 300].

error that is caused by either the conservative merging of the abstract domains, or by
some other error or bug.
With regards to analysis time, there are many cases, where the IC Domain exhibits lower
analysis time than the Interval Domain. The reason for that is that the interval domain
results in more conservative intervals after merging. For that reason, the analysis takes
longer time to terminate.

Optimization Level -O1: When applying the level 1 optimizations, the benchmarks
demonstrate slightly different behavior (see Figure 6.2). Six benchmarks fail for both do-
mains. Among them, “cover.c” and “lcdnum.c” fail, because they use the unsupported
jump register instruction (“jr”).
The IC domain still performs better. In addition to “fir.c” and “adpcm.c”, it also analyzes
the “main” and “icrc” function of the “crc.c” benchmark, whereas the interval domain fails.
With regards to the analysis time, the analysis time of the IC domain is still better in many
cases. That depends on the batch size, but it also indicates that the actual overhead of the
IC domain, does not outweigh the advantages that the IC domain has on improving the
abstract domain. Increasing the batch size, however, reduces that difference, and in most
cases, the Interval domain performs better with regards to timing.
It is also worth noting that the “fir.c” benchmark terminates for the Interval domain, when
the timeout value is larger. However, the analysis time is larger than the IC domain.

Optimization Level -O2: Figure 6.3 illustrates the results for the benchmarks with the
“-O2” optimization enabled. A major difference between the level 2 and level 1 optimiza-

68

6.2. EXPRESSIVENESS EVALUATION

ad
pcm

 (m
y_c

os)

ad
pcm

 (m
y_s

in)

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

crc
 (ic

rc)

crc
 (m

ain
)

ed
n (

main
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

lcd
nu

m (m
ain

)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

ns
(m

ain
)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (fi

b)

rec
urs

ion
 (k

alle
)0.

00
0.

25
0.

50
0.

75
1.

00
1.

25
1.

50
1.

75

An
al

ys
is

Ti
m

e
(s

)

Interval
IC
Interval Failed
IC Failed

ad
pcm

 (m
ain

)

bs
(bi

na
ry_

sea
rch

)

bso
rt1

00
 (m

ain
)

com
pre

ss
(m

ain
)

cov
er

(m
ain

)

ex
pin

t (e
xp

int
)

fir
(m

ain
)

nsi
chn

eu
 (m

ain
)

sta
tem

ate
 (m

ain
)

ud
3 (

lud
cm

p)

ud
3 (

main
)

ud
 (lu

dcm
p)

ud
 (m

ain
)

0
1

2
3

4
5

6
7

Expressiveness Evaluation (Interval Domain - IC Domain) (Optimization -O2, -bsconfig 4)

Figure 6.3: IC and Interval Domain for optimization level: -O2. The red bars represent the Interval
and the green bars the IC domain. The height of the bars represents the analysis time in seconds.
The bars with the “/” pattern, represent the benchmarks the failed with an out-of-memory error,
timeout, or compilation error. The plot is divided in two time ranges, i.e. [0,2] and (2, 300].

tions is that the “lcdnum.c” benchmark does not produce a “jr” instruction, and KTA can,
therefore, analyze it. However, the total number of benchmarks that terminate is the same
as the previous case because the “compress.c” benchmark fails with an out-of-memory er-
ror, i.e. exceeds the ulimit virtual memory limit.
The rest of the results and conclusions are similar to the -O1 case.

Optimization Level -O3: Figure 6.4 shows the results for the benchmarks with the “-O3”
optimizations enabled. The “bs.c” and “cover.c” do not terminate for any of the domains.
The IC domain remains better with regards to expressiveness. However, the Interval do-
main performs better in most of the benchmarks with regards to the analysis time.

6.2.2 Tool Expressiveness Comparison
This part of the evaluation compares KTAwith another tool, namely SWEET.The compar-
ison is based on the analysis time and evaluates the two tools with regards to expressive-
ness and their response time. For the comparison to be valid, both tools require setting
up some parameters.
The next two subsections, describe the configuration of each tool and the way they were
executed.

SWEET
SWEET is a research prototype tool for flow analysis that can produce a safe and tight
WCET. The main functionality of SWEET is flow analysis, which calculates information

69

CHAPTER 6. EVALUATION

ad
pcm

 (m
y_c

os)

ad
pcm

 (m
y_s

in)

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

crc
 (ic

rc)

crc
 (m

ain
)

ed
n (

main
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

lcd
nu

m (m
ain

)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

ns
(m

ain
)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (fi

b)

rec
urs

ion
 (k

alle
)

ud
3 (

main
)

ud
 (m

ain
)0.

00
0.

25
0.

50
0.

75
1.

00
1.

25
1.

50
1.

75

An
al

ys
is

Ti
m

e
(s

)

Interval
IC
Interval Failed
IC Failed

ad
pcm

 (m
ain

)

bs
(bi

na
ry_

sea
rch

)

bso
rt1

00
 (m

ain
)

com
pre

ss
(m

ain
)

cov
er

(m
ain

)

ex
pin

t (e
xp

int
)

fir
(m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

nsi
chn

eu
 (m

ain
)

sta
tem

ate
 (m

ain
)

ud
3 (

lud
cm

p)

ud
 (lu

dcm
p)

0
1

2
3

4
5

6
7

Expressiveness Evaluation (Interval Domain - IC Domain) (Optimization -O3, -bsconfig 4)

Figure 6.4: IC and Interval Domain for optimization level: -O3. The red bars represent the Interval
and the green bars the IC domain. The height of the bars represents the analysis time in seconds.
The bars with the “/” pattern, represent the benchmarks the failed with an out-of-memory error,
timeout, or compilation error. The plot is divided in two time ranges, i.e. [0,2] and (2, 300].

about a program, e.g loop bounds and infeasible paths. WCET analysis uses this informa-
tion to produce a tight and safe WCET [43].
SWEET implements different abstract domains for the WCET analysis, including both
relational and non-relational abstract domains. More specifically, SWEET can perform
the analysis using intervals, circular linear progressions, and different polyhedral domains
[43]. The two former domains are non-relational, whereas the latter are relational. The
evaluation considers only the two relational domains, i.e. interval and CLP for technical
reasons.
SWEET uses abstract execution as the main flow analysis technique. In AE, the abstract
states can be merged at different points. In SWEET the selection of merging points is
configurable. Table 6.1 shows the different merging policies that SWEET allows. SWEET
allows the selection of any combination of these merging points, which leads to 25 = 32
different options.
Ideally, the evaluation should consider all possible combinations of the merging points.
However, running all possible combinations leads to very high execution time for the eval-
uation, especially when the evaluation examines other parameters in conjunctionwith the
merge_point parameter. Therefore, a two-step procedure, which precedes the final eval-
uation, selects the merge combination parameters that perform best on the Mälardalen
benchmark suite. The selection procedure consists of the following two steps: (1) Bench-
mark selection, (2) Parameter selection.
Both steps use memory and time limits to restrict the resources that the analysis can
utilize. Command ulimit limits the maximum memory utilization to 500MB, and timeout
limits the maximum analysis time to 5 minutes. The same resource restrictions apply to

70

6.2. EXPRESSIVENESS EVALUATION

Option Description
all All merge points are enabled.
none No merging enabled.
fe Every function entry point.
fr Every function return point.
le Every loop exit edge.
be Every back edge.
je Every joining edge.

Table 6.1: SWEET: Abstract execution merging points.

the final experiment that compares SWEET with KTA. The following paragraphs describe
the two selection steps.

Benchmark Selection The first step runs all the benchmarks for a limited number of
merging points. These merging points are the ones shown in Table 6.1, i.e. each merging
point independently, the combination of all the merge points, i.e. “all”, and no merging
point, i.e. “none”.
This step selects a subset of the benchmarks that is the input of the next step. The selected
benchmarks exhibit the largest analysis time deviation among the Mälardalen bench-
marks. For this purpose, the select process uses the standard deviation of the analysis
time to assess the benchmarks.
The calculation of the standard deviation, s, which is based on the analysis time measure-
ments, is the following:

x̄ = 1
N

N∑
i=0

xi, s =

√√√√ 1
N

N∑
i=0

(xi − x̄)2

The results lead to the selection of 7 benchmarks that exhibit the highest standard devia-
tion. These are: “bsort100.c”, “ndes.c”, “janne_complex.c”, “ud.c”, “expint.c”, “nsichneu.c”,
and “bs.c”.

Parameter Selection The second step uses the 7 benchmarks selected in the previous
step. Each benchmark runs for all the 32 different merge parameter combinations, with
the same resource limitations as the previous step. For each benchmark, the evaluation
runs only for two optimization levels, i.e. 0 and 3 because these optimization levels exhibit
the highest diversity. The selection of the best merge parameter combination considers
mainly the number of failed benchmarks. There are 5 combinations that perform the same.
In addition to them, the “none” merging option is selected. All the selected merge_point
parameters together result in minimal failed examples. The 6 selected merging combina-
tions are: “all”, “le,be,je”, “fe,fr,le,je”, “le,je”, “fr,le,be,je”, and “none”.

71

CHAPTER 6. EVALUATION

Execution The execution of SWEET consists of two steps. First, the c code is converted
to the alf format, using ALF-llvm6. This evaluation uses the c_to_alf script that SWEET
provides. The optimization level of the c_to_alf script is not set, but it uses opt to apply
specific optimizations. The following code is the original c_to_alf script:

echo ” Bu i l d ␣ $1 . l l ”
c l ang −Wall −emit−l l vm −S −o − $1 . c | opt −mem2reg −i n s t comb ine \

− i n s t s i m p l i f y −i n s tnamer | l lvm−d i s −o $1 . l l
echo ” Bu i l d ␣ $1 . a l f ”
l l c $1 . l l −march= a l f −o=$1 . a l f
rm $1 . l l

The modified c_to_alf script for handling the four optimization levels is the following:
echo ” Bu i l d ␣ $1 . l l ”
c l ang −Wall −emit−l l vm −O0 −S −o − $1 . c | opt −mem2reg −i n s t comb ine \

− i n s t s i m p l i f y −i n s tnamer | l lvm−d i s −o $1 . l l
echo ” Bu i l d ␣ $1 . a l f ”
l l c $1 . l l −march= a l f −o=$1 . a l f
rm $1 . l l

The evaluation script that compares SWEET with KTA modifies the optimization flag as
follows:

sed − i −E ” s /−O[0−3]/−O” $ { o p t im i z a t i o n } ” / g ” c _ t o _ a l f
t imeou t $ t imeou t bash c _ t o _ a l f $ { f }

Finally, the evaluation of SWEET uses the ALF AST cost lookup table method for automat-
ically calculating the WCET, and runs the benchmark in the following way:

t ime t imeou t $ t imeou t sweet − i =$ { f } . a l f , s t d _ h l l . a l f \
func=$ { func } annot=$ { f } . ann \

−ae vo l a = t aac=$ { f } . c l t t c = s t , op merge=$merge \
−do type=$domain

File $f.ann is the annotation file that can set the range of different variables at different
program points. These program points and variables refer to the generated alf code, i.e.
$f.alf. Because the process is automatic, the annotation file initializes only the input vari-
ables for each function. The example below illustrates the content of the annotation file,
bs.ann, that corresponds to the bs.c benchmark. Input variable x of function binary_search
is initialized to TOP_INT, i.e. all possible integers. This values is set at FUNC_ENTRY, i.e.
the function entry point.

FUNC_ENTRY b i n a r y _ s e a r c h ASSIGN ”%x ” TOP_INT ;

KTA Configuration

The configuration of KTA uses the default value for the max-cycles parameter, i.e.
100,000,000. This part of the evaluation concerns only the IC domain. Hence, the evalua-
tion runs only for the IC domain.

6ALF-backend: https://github.com/visq/ALF-llvm

72

https://github.com/visq/ALF-llvm

6.2. EXPRESSIVENESS EVALUATION

Another parameter that can affect the expressiveness of KTA is the batch size, i.e. the
maximum number of program states that may exist before merging. A low number for
the bs_config parameter can lead to lower analysis time, but at the same time it leads to a
more conservative WCET and higher possibility of failure, namely lower expressiveness.
The evaluation uses only three values for bs_config, i.e. 4, 30, and 100.

6.2.3 Experiment

The final experiment uses the selected merging combinations for SWEET and three differ-
ent values for KTA.Thememory limit is approximately 500MB and the timeout 5 minutes.
The following script is the core configuration for the benchmarks. This code snippet runs
for all the different optimization levels, i.e. 0-3.

u l im i t −Sv 500000
t imeou t =5m
merge_combina t ions= ” a l l ␣ l e , be , j e ␣ fe , f r , l e , j e ␣ l e , j e ␣ f r , l e , be , j e ␣ none ”
b s c o n f i g s = ” 4 ␣ 30 ␣ 100 ”
domain= c l p
t imeou t $ t imeou t bash c _ t o _ a l f $ { f }
f o r merge in $merge_combina t ions
do

t ime t imeou t $ t imeou t sweet − i =$ { f } . a l f , s t d _ h l l . a l f \
func=$ { func } annot=$ { f } . ann \

−ae vo l a = t aac=$ { f } . c l t t c = s t , op merge=$merge \
−do type=$domain

done
fo r b s c o n f i g in $ b s c o n f i g s
do

t ime t imeou t $ t imeou t k t a wcet $ { f } . c $ { func } −b s c on f i g \
$ b s c on f i g −op t im i z e $ o p t im i z a t i o n

done

6.2.4 Results and Discussion

Figures 6.5, 6.6, 6.7, and 6.8 illustrate the results of the comparison of SWEET with KTA
for the different optimization levels. The results show the best analysis time for each
tool. The analysis time for SWEET does not include the time required for compiling the
benchmark with ALF-backend. The configuration of the KTA tool includes the cache
analysis, whereas SWEET does not include a cache analysis.

Optimization Level -O0: Figure 6.5 shows the results of the execution of KTA and
SWEET. Three of the benchmarks, namely, “fac.c”, the “fib” function of “recursion.c”, and
the “ludcmp” function of “ud.c” fail on both tools.
SWEET fails on two more benchmarks, namely all functions of “adpcm.c” and “recur-
sion.c”. The “adpcm.c” functions timeout, whereas “recursion.c” fails on an assertion: as-
sert(exit.nodes.size>0). The latter error is the cause of failure for the “fac.c” benchmark.
“ud.c” fail due to a floating-point error. All other benchmarks fail due to a timeout.

73

CHAPTER 6. EVALUATION

bs
(bi

na
ry_

sea
rch

)

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

ex
pin

t (m
ain

)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

lcd
nu

m (m
ain

)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (k

alle
)

sta
tem

ate
 (m

ain
)

ud
3 (

main
)

ud
 (m

ain
)0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
An

al
ys

is
Ti

m
e

(s
)

Sweet
KTA
SWEET Failed
KTA Failed

ad
pcm

 (m
ain

)

ad
pcm

 (m
y_c

os)

ad
pcm

 (m
y_s

in)

com
pre

ss
(m

ain
)

cov
er

(m
ain

)

crc
 (ic

rc)

crc
 (m

ain
)

ed
n (

main
)

ex
pin

t (e
xp

int
)

nd
es

(m
ain

)

nsi
chn

eu
 (m

ain
)

ns
(m

ain
)

0
2

4
6

8
10

12

bso
rt1

00
 (m

ain
)

fac
 (fa

c)

fir
(m

ain
)

matm
ult

 (m
ain

)

rec
urs

ion
 (fi

b)

ud
3 (

lud
cm

p)

ud
 (lu

dcm
p)

0
20

40
60

80
10

0

Expressiveness Evaluation (SWEET - KTA) (Optimization -O0)

Figure 6.5: SWEET and KTA (Optimization level: -O0). The results are the best for both tools. The
red bars represent the analysis time of SWEET and the green the analysis time of KTA. The plot
consists of three parts for three ranges of the analysis time, [0,1], (1,20], and (20,300] seconds.

In KTA, the “expint” function of the “expint.c” benchmark fails on a division-by-zero error.
The reason for this error is most probably the conservative merge of the abstract domain
which includes the zero value. However, this error needs to be further investigated. The
“lcdnum.c” and the “cover.c” benchmarks fail because the generated code contains an in-
direct jump (“jr”). The rest of the benchmark fail with an out-of-memory error.
In all cases, except for the “compress.c”, “janne_complex.c”, “fibcall.c”, and the “ud3.c”
benchmarks, KTA, completes the analysis faster than SWEET. With regards to expres-
siveness, SWEET performs slightly better because in addition to the commonly failed
benchmarks, SWEET fails on three additional benchmarks, whereas KTA on five.

Optimization Level -O1: Figure 6.6 shows the results that correspond to the experiment
with the level 1 optimizations enabled. In this case, SWEET does not complete the analysis
for a different benchmark, namely, “bsort100 (main)”, which times out. However, SWEET
successfully analyzes the “main” function of the “adpcm.c” benchmark.
KTA has better performance in this optimization level than the previous. It successfully
analyzes “janne_complex (complex)”, which failed in the previous case.
In this level, the expressiveness of KTA is the same as SWEET, since both tools fail on two
benchmarks and on four additional each.
The analysis time for KTA is in this case shorter than SWEET for most of the bench-
marks, as well. However, SWEET performs better for various benchmarks, i.e. “expint
(main)”, “fac (fac)”, “fibcall (fib)”, “janne_complex (main)”, “prime (prime)”, “ud3 (main)”,
and “compress (main)”.

74

6.2. EXPRESSIVENESS EVALUATION

ad
pcm

 (m
y_c

os)

bs
(bi

na
ry_

sea
rch

)

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

ex
pin

t (e
xp

int
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

lcd
nu

m (m
ain

)

ns
(m

ain
)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (fi

b)

rec
urs

ion
 (k

alle
)

sta
tem

ate
 (m

ain
)

ud
3 (

main
)

ud
 (m

ain
)0.

0
0.

2
0.

4
0.

6
0.

8
An

al
ys

is
Ti

m
e

(s
)

Sweet
KTA
SWEET Failed
KTA Failed

ad
pcm

 (m
ain

)

ad
pcm

 (m
y_s

in)

bso
rt1

00
 (m

ain
)

com
pre

ss
(m

ain
)

cov
er

(m
ain

)

crc
 (ic

rc)

crc
 (m

ain
)

ed
n (

main
)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

nsi
chn

eu
 (m

ain
)0.

0
2.

5
5.

0
7.

5
10

.0
12

.5
15

.0
17

.5

fir
(m

ain
)

ud
3 (

lud
cm

p)

ud
 (lu

dcm
p)

0
20

40
60

80
10

0

Expressiveness Evaluation (SWEET - KTA) (Optimization -O1)

Figure 6.6: SWEET and KTA (Optimization level: -O1). The red bars represent the analysis time
of SWEET and the green the analysis time of KTA.The plot consists of three parts for three ranges
of the analysis time, [0,1], (1,20], and (20,300] seconds.

ad
pcm

 (m
y_c

os)

bs
(bi

na
ry_

sea
rch

)

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

ed
n (

main
)

ex
pin

t (e
xp

int
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

lcd
nu

m (m
ain

)

ns
(m

ain
)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (fi

b)

rec
urs

ion
 (k

alle
)

sta
tem

ate
 (m

ain
)

ud
3 (

main
)

ud
 (m

ain
)0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
An

al
ys

is
Ti

m
e

(s
)

Sweet
KTA
SWEET Failed
KTA Failed

ad
pcm

 (m
ain

)

ad
pcm

 (m
y_s

in)

bso
rt1

00
 (m

ain
)

cov
er

(m
ain

)

crc
 (ic

rc)

crc
 (m

ain
)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

nsi
chn

eu
 (m

ain
)

0
2

4
6

8
10

12
14

16

com
pre

ss
(m

ain
)

fir
(m

ain
)

ud
3 (

lud
cm

p)

ud
 (lu

dcm
p)

0
20

40
60

80
10

0

Expressiveness Evaluation (SWEET - KTA) (Optimization -O2)

Figure 6.7: SWEET and KTA (Optimization level: -O2). The red bars represent the analysis time
of SWEET and the green of KTA. The plot consists of three parts for three ranges of the analysis
time, [0,1], (1,20], and (20,300] seconds.

Optimization Levels -O2 and -O3: Figures 6.7 and 6.8 show the results for the higher
optimization levels, i.e. -O2 and -O3.
Both tools fail on “compress (main)”, “ud3 (ludcmp)”, and “ud (ludcmp)”. KTA fails on two

75

CHAPTER 6. EVALUATION

ad
pcm

 (m
y_c

os)

bs
(bi

na
ry_

sea
rch

)

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

ed
n (

main
)

ex
pin

t (e
xp

int
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

lcd
nu

m (m
ain

)

ns
(m

ain
)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (fi

b)

rec
urs

ion
 (k

alle
)

sta
tem

ate
 (m

ain
)

ud
3 (

main
)

ud
 (m

ain
)0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
An

al
ys

is
Ti

m
e

(s
)

Sweet
KTA
SWEET Failed
KTA Failed

ad
pcm

 (m
ain

)

ad
pcm

 (m
y_s

in)

bso
rt1

00
 (m

ain
)

cov
er

(m
ain

)

crc
 (ic

rc)

crc
 (m

ain
)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

nsi
chn

eu
 (m

ain
)

0
2

4
6

8
10

12
14

16

com
pre

ss
(m

ain
)

fir
(m

ain
)

ud
3 (

lud
cm

p)

ud
 (lu

dcm
p)

0
20

40
60

80
10

0

Expressiveness Evaluation (SWEET - KTA) (Optimization -O3)

Figure 6.8: SWEET and KTA (Optimization level: -O3). The red bars represent the analysis time
for SWEET and the green of KTA. The plot consists of three parts for three ranges of the analysis
time, [0,1], (1,20], and (20,300] seconds.

additional benchmarks, i.e. “expint (expint)” and “cover (main)”. With -O3, KTA fails also
on “janne_complex (complex)”.
SWEET fails on more benchmarks. Benchmark “compress(compress)” fails with an LLVM
error: “Error: emitConstant()”. Benchmark “edn (main)” fails also with an LLVM error:
“Error: unsupported: visitInsertElementInst”. The rest of the benchmarks show the same
behavior as in the previous optimization levels.
So, when -O2 and -O3 are enabled, KTA seems to perform better with regards to expres-
siveness, because the number of failed benchmarks is lower.
Also, the analysis time of KTA is in the general case lower. Especially the benchmarks
that appear on the second and the third parts of Figures 6.7 and 6.8, demonstrate very
high time difference between the two tools.

6.3 Single-core Cache-based Analysis Evaluation
The evaluation of the cache-based analysis consists of two parts. The first part measures
the time overhead of the cache analysis on the KTA methodology. The second part at-
tempts to evaluate the tightness of cache-based analysis using a hardware platform, i.e.
the Creator Ci40 IoT Hub board.

6.3.1 Analysis Time Overhead
The cache analysis has an overhead on the analysis time. The purpose of this section
is to quantify this overhead by comparing the analysis time with and without the cache

76

6.3. SINGLE-CORE CACHE-BASED ANALYSIS EVALUATION

analysis.

Experimental Setup

To measure this overhead of the cache, the evaluation uses an optional parameter, i.e. -
nocache. This parameter deactivates the cache analysis and uses the total memory access
time for every access. The cache configuration, e.g. the cache size, associativity, is the
same as the next Section, i.e. Hardware-base Evaluation.
The KTA tool parameters are the default, i.e. bsconfig=4 and -max_cycles=1000000000. This
evaluation part considers all the different optimization levels, separately. The benchmark
configuration of this part is as in Table B.1.
The time measurement uses the Unix.gettimeofday function that measures the analysis
time, without including the compilation and disassembling stages. The measured time is
only the WCET analysis that uses abstract execution.

Results and Discussion

Figures 6.9, 6.10, 6.11, and 6.12 show the results of this comparison. Table 6.2 shows the
overhead of the cache analysis. The calculation of the overhead uses Equation 6.1. Also,
the pipeline analysis is not deactivated, but the overhead is linear.

overhead = 1
N

N∑
i=1

(ticache
− tinocache

)
tinocache

(6.1)

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

ex
pin

t (m
ain

)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

nsi
chn

eu
 (m

ain
)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (k

alle
)

sta
tem

ate
 (m

ain
)0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
An

al
ys

is
Ti

m
e

(s
)

Cache
No cache
Cache Failed
No cache Failed

ad
pcm

 (m
ain

)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

ns
(m

ain
)

ud
3 (

main
)

ud
 (m

ain
)

0
2

4
6

8

ad
pcm

 (m
y_c

os)

ad
pcm

 (m
y_s

in)

bs
(bi

na
ry_

sea
rch

)

bso
rt1

00
 (m

ain
)

com
pre

ss
(m

ain
)

cov
er

(m
ain

)

crc
 (ic

rc)

crc
 (m

ain
)

ed
n (

main
)

ex
pin

t (e
xp

int
)

fac
 (fa

c)

fir
(m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

lcd
nu

m (m
ain

)

rec
urs

ion
 (fi

b)

ud
3 (

lud
cm

p)

ud
 (lu

dcm
p)

0
20

40
60

80
10

0

Cache Analysis Overhead (Optimization -O0, bsconfig 4)

Figure 6.9: Cache analysis overhead for optimization level 0.

77

CHAPTER 6. EVALUATION

bs
(bi

na
ry_

sea
rch

)

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

nsi
chn

eu
 (m

ain
)

ns
(m

ain
)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (k

alle
)

sta
tem

ate
 (m

ain
)0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40
An

al
ys

is
Ti

m
e

(s
)

Cache
No cache
Cache Failed
No cache Failed

ad
pcm

 (m
ain

)

ad
pcm

 (m
y_c

os)

ad
pcm

 (m
y_s

in)

crc
 (ic

rc)

crc
 (m

ain
)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

rec
urs

ion
 (fi

b)

ud
3 (

main
)

ud
 (m

ain
)

0
2

4
6

8

bso
rt1

00
 (m

ain
)

com
pre

ss
(m

ain
)

cov
er

(m
ain

)

ed
n (

main
)

ex
pin

t (e
xp

int
)

fir
(m

ain
)

lcd
nu

m (m
ain

)

ud
3 (

lud
cm

p)

ud
 (lu

dcm
p)

0
20

40
60

80
10

0

Cache Analysis Overhead (Optimization -O1, bsconfig 4)

Figure 6.10: Cache analysis overhead for optimization level 1.

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

crc
 (m

ain
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

lcd
nu

m (m
ain

)

nsi
chn

eu
 (m

ain
)

ns
(m

ain
)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (k

alle
)

sta
tem

ate
 (m

ain
)0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40
An

al
ys

is
Ti

m
e

(s
)

Cache
No cache
Cache Failed
No cache Failed

ad
pcm

 (m
ain

)

ad
pcm

 (m
y_c

os)

ad
pcm

 (m
y_s

in)

crc
 (ic

rc)

ed
n (

main
)

jan
ne

_co
mple

x (
com

ple
x)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

rec
urs

ion
 (fi

b)

ud
3 (

main
)

ud
 (m

ain
)

0
2

4
6

8

bs
(bi

na
ry_

sea
rch

)

bso
rt1

00
 (m

ain
)

com
pre

ss
(m

ain
)

cov
er

(m
ain

)

ex
pin

t (e
xp

int
)

fir
(m

ain
)

ud
3 (

lud
cm

p)

ud
 (lu

dcm
p)

0
20

40
60

80
10

0
Cache Analysis Overhead (Optimization -O2, bsconfig 4)

Figure 6.11: Cache analysis overhead for optimization level 2.

Figures 6.9, 6.10, 6.11, and 6.12 show that the cache analysis clearly introduces an overhead
to the WCET analysis. Lower optimization levels display larger overhead because in un-
optimized code the register allocation is not optimal resulting in more memory accesses.
In all cases, the instruction cache adds an overhead. Benchmarks such as “bsort100(main)”
introduces higher overhead, because they include operations on arrays, which results in
more memory accesses.

78

6.3. SINGLE-CORE CACHE-BASED ANALYSIS EVALUATION

cnt
 (m

ain
)

com
pre

ss
(co

mpre
ss)

crc
 (ic

rc)

crc
 (m

ain
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

fib
cal

l (f
ib)

ins
ert

sor
t (m

ain
)

jan
ne

_co
mple

x (
main

)

jfd
cti

nt
(m

ain
)

lcd
nu

m (m
ain

)

nsi
chn

eu
 (m

ain
)

ns
(m

ain
)

pri
me (

pri
me)

rec
urs

ion
 (a

nk
a)

rec
urs

ion
 (k

alle
)

sta
tem

ate
 (m

ain
)

ud
3 (

main
)

ud
 (m

ain
)0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40
An

al
ys

is
Ti

m
e

(s
)

Cache
No cache
Cache Failed
No cache Failed

ad
pcm

 (m
ain

)

ad
pcm

 (m
y_c

os)

ad
pcm

 (m
y_s

in)

ed
n (

main
)

matm
ult

 (m
ain

)

nd
es

(m
ain

)

rec
urs

ion
 (fi

b)
0

2
4

6
8

bs
(bi

na
ry_

sea
rch

)

bso
rt1

00
 (m

ain
)

com
pre

ss
(m

ain
)

cov
er

(m
ain

)

ex
pin

t (e
xp

int
)

fir
(m

ain
)

jan
ne

_co
mple

x (
com

ple
x)

ud
3 (

lud
cm

p)

ud
 (lu

dcm
p)

0
20

40
60

80
10

0

Cache Analysis Overhead (Optimization -O3, bsconfig 4)

Figure 6.12: Cache analysis overhead for optimization level 3.

Opt Level Number of benchmarks Overhead in %
0 27 223.08
1 30 215.43
2 30 179.75
3 29 139.70

Table 6.2: The overhead of the cache analysis for each optimization level using Equation 6.1. The
total overhead for lower optimization levels is larger because unoptimized code contains more
memory accesses (unoptimized register allocation).

6.3.2 Hardware-based Evaluation

The Creator ci40 board contains a multi-core processing unit with two cores, and each
core sees both an L1 cache and an L2 cache. The replacement policies of L1 and L2 are
LRU and pseudo LRU, respectively.
The memory system of cXT200, including the MIPS32® interAptiv™ processor, includes a
two level cache hierarchy with a private Level 1 cache, a shared Level 2 cache, and 256MB
of RAM. Table 6.3 shows the cache characteristics, such as the cache size, the cache line
size, and the associativity.

Cache analysis configuration parameters

The low-level analysis uses configuration parameters that quantify the access times to the
memory and the caches, as well as, the execution time of every instruction in the pipeline.
These parameters depend on the specific hardware implementation, such as the cache

79

CHAPTER 6. EVALUATION

Instruction L1 Cache Data L1 Cache Unified L2 Cache
Sets per way 256 256 2048
Bytes per line 32 32 32
Ways 4 4 8
Size 32KB 32KB 512KB

Table 6.3: Cache hierarchy characteristics for the Creator Ci40 board, implementing a multi-core
MIPS32® architecture.

characteristics, e.g. size and associativity. Therefore, these parameters differ significantly
in every hardware implementation.
A way to acquire these parameters is through the documentation provided by the manu-
facturer. However, this documentation does not provide the precise latency for accessing
the L1 and L2 caches. The interAptiv™ multiprocessing system user’s manual mentions
the approximatemainmemory (DRAM) access latency to be between 50 and 200 processor
cycles [24]. However, this number is very approximate.
Because the timing information provided in the documentation is limited, measuring these
parameters directly on hardware can provide an estimation of the worst-case latencies.
Table 6.5 shows the measurement results. The selection of the measurement parameters
is based on the cache characteristics. Different stride values emulate cache hit and miss
penalties for all the cache levels by loading addresses that are mapped to the same cache-
block. When the number of the cache conflicting memory accesses is greater that the
number of ways, these consecutive accesses result in continues cache misses. However,
the result is not accurate in the case of the Level 1 cache, which is 4-way set associative
because there are 8 32-byte write-buffers that hide the cache miss penalty. For this reason,
the number of consecutive loads and stores has to be greater than eight.

asm v o l a t i l e (” rdhwr %0 , $2 ” : ” = r ” (s t a r t)) ;
asm v o l a t i l e (” lw %0 , %1 ” : ” = r ” (d s t) : ” r ” (s r c)) ;
. . .
asm v o l a t i l e (” rdhwr %0 , $2 ” : ” = r ” (end)) ;

Using dynamically measured values for configuring the analysis parameters, makes the
analysis vulnerable with regards to safeness. The reason for that is that the measured
values depend highly on the quality of the measurements and their extend. It is also
well known that dynamic techniques cannot guarantee theworst-case parameters because
they provide the worst observed parameters.

Cache-based analysis Evaluation

The low-level cache-based analysis evaluation is based on tightness. In particular, the
evaluation measures how tight the estimated WCET of the KTA tool is. The evaluation of
the low-level analysis uses the Mälardalen WCET benchmark suite7 [22].

7 WCET benchmarks: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

80

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

6.3. SINGLE-CORE CACHE-BASED ANALYSIS EVALUATION

of sw Stride Avg (cycles) Min (cycles) Max (cycles)
9 1 1.7 1.6 1.8
10 1 1.9 1.8 2.0
11 1 2.2 2.2 2.2
12 1 2.2 2.2 2.3
9 256 2.9 2.9 2.9
10 256 3.0 3.0 3.0
11 256 3.2 3.1 3.3
12 256 3.2 3.2 3.2
9 2048 12.4 12.4 12.4
10 2048 13.1 13.0 13.2
11 2048 13.7 13.6 13.8
12 2048 14.1 14.0 14.2
9 32768 69.5 55.8 178.0
10 32768 149.1 141.4 220.6
11 32768 194.9 184.9 263.8
12 32768 213.7 202.5 275.7

Table 6.4: Estimation of the average miss latencies for L1 and L2 caches for 9-12 consecutive
conflicting stores (sw). L1 cache is 4-way set associative, however, there are 8 × 32 − byte write
buffers that compensate for the cache misses.

of lw Stride Avg (cycles) Min (cycles) Max (cycles)
9 1 3.2 3.1 3.3
10 1 3.1 3.0 3.2
11 1 3.0 2.9 3.1
12 1 3.2 3.2 3.2
9 256 3.2 3.1 3.3
10 256 3.1 3.0 3.2
11 256 3.0 2.9 3.1
12 256 3.2 3.2 3.2
9 2048 19.0 18.9 19.3
10 2048 19.0 19.0 19.0
11 2048 19.0 18.9 19.3
12 2048 19.4 19.3 19.5
9 32768 93.3 88.9 175.3
10 32768 155.8 148.0 236.2
11 32768 206.6 196.5 276.0
12 32768 195.6 186.2 255.5

Table 6.5: Average miss latencies for L1 and L2 caches for 9-12 consecutive conflicting loads (lw).

In this evaluation, KTA analyzes each of the Mälardalen benchmarks (as discussed in 6.2)
with concrete values as inputs. The non-concrete inputs are intervals within which the

81

CHAPTER 6. EVALUATION

WCET is known. The input to KTA is a concrete value that is also used in the hardware.

KTA-tool and Hardware setup: The configuration of KTA includes the cache penalty
parameters and different optimization levels for the each benchmark.
The code for measuring the execution time of a task on the hardware is the following:

d e f i n e MEASURE_1_RET (func , input , r e s) { \
asm v o l a t i l e (PUSH_ALL ” \ n \ t \

. a l i g n 5 \ n \ t \
nop \ n \ t \
rdhwr $16 , $2 \ n \ t \
l i $4 , ” # i npu t ” \ n \ t \
nop \ n \ t \
j a l ” # func ” \ n \ t \
move %[r e s] , $2 \ n \ t \
rdhwr %[end] , $2 \ n \ t \
sw $16 ,% [s t a r t] \ n \ t ” \
POP_ALL ” \ n \ t ” \
: [r e s] ”= r ” (r e s) , \
[end] ”= r ” (end) \

: [s t a r t] ”m” (s t a r t)) ; \
}

For the evaluation, the measurement of the execution time of the benchmark on the hard-
ware runs multiple times in a loop. However, only during the first execution the caches
are uninitialized resulting in compulsory misses. As a result, the first execution is in all
measurements the worst case execution time that we are able to measure. In order for
the result not to depend on one sole measurement (the first), during the evaluation of this
part, each benchmark execution is repeated 10 times after a reset. For a result to be as near
to the WCET as possible, the hardware measurements are taken on a cold start and the
variables used for measuring the time (e.g. start and end) are loaded before the first call,
so that they will be cached. In addition to that, as discussed in Section 6.1.4, the measure-
ment code is aligned to the instruction cache line size in order to avoid the measurement
of additional instruction cache misses.
MIPS® interAptiv™ processor contains a number of advanced techniques for accelerating
the hardware. These include: out-of-order load and store completion, instruction cache
way prediction, branch prediction, non-blocking loads, and return address branch predic-
tion. However KTA does not implement these mechanisms, so the evaluation should not
include them. Configuration register 7 can disable these mechanisms. Table 6.6 shows the
configuration options, as well as, the respective bits of configuration register 7 that were
set [24].

Results and Discussion
Figures 6.13, 6.14, 6.15, and 6.16 show the results of the evaluation. The ideal result would
be that the WCET result and the hardware execution are the same. However, the abstract
model that KTA models and the actual hardware are not identical. So, the results of the

82

6.4. MULTI-CORE CACHE-BASED ANALYSIS EVALUATION

Option Description Config7 bit
ICWP Instruction cache way prediction 12
CPOOO Out-of-order Data return 6
ULB Uncached Load Blocking 4
BP Branch Prediction 3
RPS Return Prediction Stack 2
SL Non Blocking Loads. 0

Table 6.6: Configuration options for disabling speculative mechanism of the interAptiv™ proces-
sor.

pri
me (

main
)

pri
me (

pri
me)

jfd
cti

nt
(m

ain
)

ex
pin

t (m
ain

)

fac
 (fa

c)

rec
urs

ion
 (fi

b)

fib
cal

l (f
ib)

rec
urs

ion
 (k

alle
)

ins
ert

sor
t (m

ain
)

cnt
 (m

ain
)

bs
(bi

na
ry_

sea
rch

)

rec
urs

ion
 (a

nk
a)

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

W
CE

T
(c

yc
le

s)

KTA
Creator ci40

matm
ult

 (m
ain

)

nd
es

(m
ain

)

ns
(fo

o)

ud
3 (

lud
cm

p)

bso
rt1

00
 (m

ain
)

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

Hardware-based Cache Analysis Evaluation (Optimization -O0, -bsconfig 30)

Figure 6.13: Single-core cache analysis evaluation for bsconfig=30.

hardware and KTA differ. More importantly, in some of the benchmarks, e.g. “fdct(main)”,
the WCET result is not the expected, because of incompatibilities with the hardware tim-
ing model. The Creator ci40 board implements complex mechanisms that KTA abstracts.
One example is the replacement policy of the L2 cache, which is pseudo LRU. However,
KTA models LRU replacement policy for both the L1 and the L2 caches.

6.4 Multi-core Cache-based Analysis Evaluation
The evaluation of the multi-core analysis is more difficult than the single-core case, be-
cause a multi-core execution time depends on coherence cache misses and the bus traffic
that is difficult to reproduce on the hardware. Also, the traffic affects the memory access
time in a non-predictable way. The procedure for measuring the execution time for the
multi-core analysis is similar to the single-core cache evaluation. The analysis measures
the execution time dynamically on the hardware and subsequently, compares the worst
of the measured cases to the KTA analysis result.

83

CHAPTER 6. EVALUATION

pri
me (

main
)

pri
me (

pri
me)

ns
(fo

o)

jfd
cti

nt
(m

ain
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

rec
urs

ion
 (fi

b)

ad
pcm

 (m
y_s

in)

ad
pcm

 (m
y_c

os)

fib
cal

l (f
ib)

rec
urs

ion
 (k

alle
)

ins
ert

sor
t (m

ain
)

cnt
 (m

ain
)

bs
(bi

na
ry_

sea
rch

)

rec
urs

ion
 (a

nk
a)

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

W
CE

T
(c

yc
le

s)

KTA
Creator ci40

matm
ult

 (m
ain

)

nd
es

(m
ain

)

ud
3 (

lud
cm

p)

ad
pcm

 (m
ain

)

bso
rt1

00
 (m

ain
)

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

Hardware-based Cache Analysis Evaluation (Optimization -O1, -bsconfig 30)

Figure 6.14: Single-core cache analysis evaluation for bsconfig=30.

pri
me (

main
)

pri
me (

pri
me)

ns
(fo

o)

jfd
cti

nt
(m

ain
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

rec
urs

ion
 (fi

b)

ad
pcm

 (m
y_s

in)

ad
pcm

 (m
y_c

os)

fib
cal

l (f
ib)

rec
urs

ion
 (k

alle
)

ins
ert

sor
t (m

ain
)

cnt
 (m

ain
)

bs
(bi

na
ry_

sea
rch

)

rec
urs

ion
 (a

nk
a)

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

W
CE

T
(c

yc
le

s)

KTA
Creator ci40

matm
ult

 (m
ain

)

nd
es

(m
ain

)

ud
3 (

lud
cm

p)

ad
pcm

 (m
ain

)

bso
rt1

00
 (m

ain
)

0
10

00
00

20
00

00
30

00
00

40
00

00

Hardware-based Cache Analysis Evaluation (Optimization -O2, -bsconfig 30)

Figure 6.15: Single-core cache analysis evaluation for bsconfig=30.

6.4.1 Experimental Setup

The following subsections describe the experimental setup, with regards to (1) the bench-
marks, (2) the hardware configuration, and (3) the KTA tool configuration.

Multicore Analysis Evaluation Benchmarks

This part of the evaluation does not use the Mälardalen benchmarks because they are
sequential. Instead, the evaluation uses a number of small benchmarks that are able to

84

6.4. MULTI-CORE CACHE-BASED ANALYSIS EVALUATION

pri
me (

main
)

pri
me (

pri
me)

ns
(fo

o)

jfd
cti

nt
(m

ain
)

ex
pin

t (m
ain

)

fac
 (fa

c)

fdc
t (m

ain
)

rec
urs

ion
 (fi

b)

fib
cal

l (f
ib)

rec
urs

ion
 (k

alle
)

ins
ert

sor
t (m

ain
)

cnt
 (m

ain
)

bs
(bi

na
ry_

sea
rch

)

rec
urs

ion
 (a

nk
a)

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

W
CE

T
(c

yc
le

s)

KTA
Creator ci40

matm
ult

 (m
ain

)

nd
es

(m
ain

)

ud
3 (

lud
cm

p)

bso
rt1

00
 (m

ain
)

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

30
00

00
35

00
00

Hardware-based Cache Analysis Evaluation (Optimization -O3, -bsconfig 30)

Figure 6.16: Single-core cache analysis evaluation for bsconfig=30.

support the multi-core analysis. The evaluation runs the benchmarks on the two-core
Creator ci40 board and subsequently, compare the worst-case result against KTA.
The benchmarks consist of 6 pairs of tasks and use arrays (vectors) with the size of one
level-1 data cache line, i.e. 32 bytes. Each task is aligned to the instruction cache line
size using the compiler flag -falign-functions=32 (mips-mti-elf). Hence, the instructions
of the two temporally interfering tasks do not reside at the same instruction cache line
that would cause false sharing. If false sharing was possible, a cache line that has been
loaded to the shared level-2 cache would result in a hit for the other processor. This
condition makes the execution time dependent on the order of the execution of the two
cores and therefore, the evaluation becomes more complex. The following paragraphs
describe briefly the six task pairs.

/ / R − R
vo id t a s k1_0 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++) {

v e c t o r s . v0 [i] = v e c t o r s . v [i] + 1 ;
}

}
vo id t a s k1_1 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++) {

v e c t o r s . v1 [i] = v e c t o r s . v [i] + 1 ;
}

}

Task pair 1: Read-Read The two
tasks of this pair, task1_0 and
task1_1, read the same global ar-
ray vectors.v, and share no further
addresses. This is an R/R case,
namely the case when the tempo-
rally interfering tasks do notmodify
(write) any shared address, but only
read shared addresses. The model
of the multi-core analysis assumes
that reading from a shared address
increases the traffic, but it actually
does not result into invalidates that would affect the cache hit rate.

85

CHAPTER 6. EVALUATION

/ / R − W
void t a s k2_0 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++) {

v e c t o r s . v0 [i] = v e c t o r s . v [i] + 1 ;
}

}
vo id t a s k2_1 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++) {

v e c t o r s . v [i] = v e c t o r s . v1 [i] + 1 ;
}

}

Task pair 2: Read-Write One of
the tasks, task2_0, reads the global
array vectors.v, and the other task,
task2_1, writes to the same array.
This is an R/W case, which means
that one of the temporally interfer-
ing tasks reads from a shared ad-
dress and the other writes to the
same address. Themulti-coremodel
expects that the latter task will in-
validate the shared cache block, re-
sulting in L1 cache misses for the task that reads the shared block (task2_1).

/ / W − W
void t a s k3_0 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++) {

v e c t o r s . v [i] = v e c t o r s . v0 [i] + 1 ;
}

}
vo id t a s k3_1 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++) {

v e c t o r s . v [i] = v e c t o r s . v1 [i] + 1 ;
}

}

Task pair 3: Write-Write Both
tasks, i.e. task3_0 and task3_1, write
to the same global array vectors.v,
and share no further addresses. This
is a W/W case, namely the case
when both the temporally interfer-
ing tasks modify the same cache
block. According to the model, ev-
ery task will broadcast an invali-
date to all remote caches and sub-
sequently, the cache will write back
the data to the shared memory, here
the L2 cache. The cache write-allocate policy causes the next task to load the block, and
based on the model, a cache-to-cache transaction will occur.

/ / RW − W
void t a s k4_0 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++) {

v e c t o r s . v [i] = v e c t o r s . v [i] + 1 ;
}

}
vo id t a s k4_1 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++) {

v e c t o r s . v [i] = v e c t o r s . v1 [i] + 1 ;
}

}

Task pair 4: Read/Write-Write
One of the tasks, task4_0, reads
and writes to the global array vec-
tors.v that covers one cache line.
The other task, i.e. task4_1, only
writes to the same array. This is a
RW/Wcase, namely one of the tasks
reads and writes to a shared ad-
dress, whereas the other onlywrites
to the same array. According to
themodel, the reading (andwriting)
task will have to reload the shared
block, if the writing task writes to it before the other task.

86

6.4. MULTI-CORE CACHE-BASED ANALYSIS EVALUATION

/ / RW − RW
void t a s k5_0 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++) {

v e c t o r s . v [i] = v e c t o r s . v [i] + 1 ;
}

}
vo id t a s k5_1 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++) {

v e c t o r s . v [i] = v e c t o r s . v [i] + 1 ;
}

}

Task pair 5: Read/Write-
Read/Write Both tasks, i.e.
task5_0 and task5_1, read and write
to the same global array vectors.v,
and share no further addresses.
This is a RW/RW case, i.e. both
tasks read and write to the same
shared addresses. Every write,
invalidates the copies in the other
caches. Reads may result to a HIT
or a MISS, depending on the which
core modified the memory block last.

/ / RW − RW
void t a s k 6_0 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++)

v e c t o r s . v [i] = v e c t o r s . v [i]
+ v e c t o r s . v0 [i] + 1 ;

}
vo id t a s k 6_1 (vo id) {

i n t i ;
f o r (i = 0 ; i <N ; i ++)

v e c t o r s . v [i] = v e c t o r s . v [i]
+ v e c t o r s . v1 [i] + 1 ;

}

Task pair 6: Read and
Read/Write-Read/Write
The two tasks of this
benchmark are task6_0
and task6_1. They are
similar to the previous
case, i.e. task pair 5, with
the difference that task
6 pair involves reading
from a non-shared memory
buffer, i.e. vectors.v0 and
vectors.v1.

Hardware Configuration
The measurements on the hardware use the same configurations as in the case of the
single-core cache analysis, but also activates the second core. The interAptiv™ processor
implements also hardware threads, which are inactive during this evaluation. The bench-
mark tasks take no inputs, so the code in the following Listing applies to all benchmarks:

d e f i n e MEASURE_0_RET (func , res , s t a r t , end) { \
asm v o l a t i l e (PUSH_ALL ” \ n \ t \

. a l i g n 5 \ n \ t \
nop \ n \ t \
rdhwr $16 , $2 \ n \ t \
nop \ n \ t \
j a l ” # func ” \ n \ t \
move %[r e s] , $2 \ n \ t \
rdhwr %[end] , $2 \ n \ t \
sw $16 ,% [s t a r t] \ n \ t ” \
POP_ALL ” \ n \ t ” \
: [r e s] ”= r ” (r e s) , \
[end] ”= r ” (end) , \

: [s t a r t] ”m” (s t a r t)) ; }

87

CHAPTER 6. EVALUATION

KTA Configuration
The configuration of KTA corresponds to analyzing temporal and spatial interfering tasks.
This evaluation considers only the 0 optimization level (-O0), because the code is simple
and the different optimizations levels do not alter the code significantly. All the other
parameters are set to their default options.
For each benchmark, i.e. pair of tasks, KTA performs the analysis for 4 cases, (1-2) each
of the two tasks run independently with no interference and (3-4) each of the two tasks
run under the presence of the other task.

! / b in / bash
f o r i i n { 1 . . 6 }
do

k t a wcet $ {MBENCH_PATH } / t a s k s . e l f t a s k $ { i } _0
k t a wcet $ {MBENCH_PATH } / t a s k s . e l f t a s k $ { i } _1
k t a wcet $ {MBENCH_PATH } / t a s k s . e l f t a s k $ { i } _0 −t a s k s t a s k $ { i } _1
k t a wcet $ {MBENCH_PATH } / t a s k s . e l f t a s k $ { i } _1 −t a s k s t a s k $ { i } _0

done

6.4.2 Results and Discussion
The following subsections present (1) the hardwaremeasurements for the average case and
(2) the finalWCET results of KTA.The average case measurements illustrate the hardware
behavior when there is temporal and spatial interference between the cores. The second
part compares the result of KTA with actual worst-case measurements on the hardware.

Average Case
Figures 6.17-6.22 shows the average case execution time, excluding the initial cold (un-
cached) executions. Every subfigure corresponds to each of the task pairs. This result
shows that the correlation of the cores when they interfere matches with the expected.
In all six examples, the non-interfering measurements are the same, which means that
there is no execution-time assymetry between the pair tasks. However, when running
simultaneously, it is possible that there is assymetry in the execution order of the tasks.

88

6.4. MULTI-CORE CACHE-BASED ANALYSIS EVALUATION

Figure 6.17: Execution time on Creator ci40 without the initial
cold misses of the cache. Each core executes on of the tasks.
One hardware thread runs on each core.

Task pair 1: Read-Read
This case consists of two
small tasks called task1_0 and
task1_1. These tasks are in-
terfering temporally, i.e. run-
ning at the same time. The
spatial interferenece includes
reading the same data vec-
tor with no other spatial in-
terference. This represents
the R/R case, i.e. both tasks
that are temporally interfer-
ing solely read from the same
data, but do not display any
further spatial interference.
The presence of the core has
small impact on the actual ex-
ecution time. Figure 6.17 shows the effect of this type of interference.

Figure 6.18: Execution time on Creator ci40 without the initial
cold misses of the cache. Each core executes on of the tasks.
One hardware thread runs on each core.

Task pair 2: Read-Write
The second pair, i.e. task2_-
0 and task2_1, consists of one
task reading and the other
task writing to a shared ad-
dress. In this case, the writ-
ing task, i.e. task2_1, forces
the reading task, i.e. task2_-
0, to invalidate its L1 cache
copy. That will cause a new
cache miss, when task2_0 at-
tempts to load one of the
words in the cache block
(vector). Figure 6.18 shows
this effect, with core 0 delay-
ing almost 100 cycles, when
core 1 writes to the shared
address. Also, core 1 is also
affected by core 0 because every write takes more time waiting to send invalidates to the
shared caches.

89

CHAPTER 6. EVALUATION

Figure 6.19: Execution time on Creator ci40 without the initial
cold misses of the cache. Each core executes on of the tasks.
One hardware thread runs on each core.

Task pair 3: Write-Write
The third task pair consists
of two tasks, i.e. task3_-
0 and task3_1, that write to
the same address, while tem-
porally intefering. The two
tasks display no further spa-
tial interference. This case
displays the same effect as in
the previous case, i.e. the
write to a shared data vec-
tor causes an additional delay
to invalidate and write back.
The presence of write buffers
hides the miss latency. Fig-
ure 6.19 shows the effect of
this type of spatial intefer-
ence to the average execution time.

Figure 6.20: Execution time on Creator ci40 without the initial
cold misses of the cache. Each core executes on of the tasks.
One hardware thread runs on each core.

Task pair 4: Read/Write-
Write The forth task pair
consists of two tasks, i.e.
task4_0 and task4_1, that
interfere spatially while
running on one core each.
Core 0 reads and writes from
the shared memory block,
whereas core 1 only writes.
Core 1 seems to have a delay
due to the invalidation of
the shared data. The delay
of core 0 is not so large, for
similar reasons as with task2.
In particular, core 0 performs
some of the reads before the
writes of core 1 to the shared
address. Figure 6.20 shows
the effect of the R/W-W type of spatial inteference to the average execution time.

90

6.4. MULTI-CORE CACHE-BASED ANALYSIS EVALUATION

Figure 6.21: Execution time on Creator ci40 without the initial
cold misses of the cache. Each core executes on of the tasks.
One hardware thread runs on each core.

Task pair 5: Read/Write-
Read/Write In the case
when both tasks, task5_0 and
task5_1, read and write to
the shared address the delay
is analogous to the task2
example. Both tasks need
to invalidate the data when
they write, but also wait for
reading the modified data.
The asymmetry is probably
due to the order that the
two processes access the
data. Figure 6.21 shows the
effect of this type of spatial
inteference to the average
execution time.

Figure 6.22: Execution time on Creator ci40 without the initial
cold misses of the cache. Each core executes on of the tasks.
Only one hardware thread runs on each core.

Task pair 6: Read and
Read/Write-Read/Write
This task pair, i.e. task6_0
and task6_1, is similar to
task5, with the difference
that this pair performs one
additional read to a non-
shared address. Figure 6.22
shows the effect of this type
of spatial inteference to the
average execution time. The
average execution time in
this case is symmetric, i.e.
the red and purple lines
that correspond to the mea-
surements of the interfering
tasks are very near, indicat-
ing that the measurements
are symmetric with regards to the order of the two tasks.

91

CHAPTER 6. EVALUATION

Worst-Case Execution Time

task number task_0 task_1 task_0/task_1 task_1/task_0
ci40 KTA ci40 KTA ci40 KTA ci40 KTA

1 1994 3064 2048 3064 2046 3064 2038 3064
2 1994 3064 2056 3064 2038 5083 2040 3177
3 2048 3064 2054 3064 2048 3429 2040 3429
4 2002 2776 2056 3064 2048 5448 2040 3429
5 1986 2776 2054 2776 2048 5448 2038 5448
6 2516 3468 2530 3468 2508 6137 2500 6137

Table 6.7: The table contains the worst measured execution time on the hardware (Creator ci40)
and the result of the analysis for tasks that interfere temporally and spatially with tasks running
on other cores. Every line corresponds to each benchmark. Every row corresponds to different
analysis; the first two columns correspond to the single-core analysis of the first (respectively
second) task of the pair that comprises the benchmark, the last two columns correspond to the
multi-core analysis of one task when the other interferes temporally and spatially.

The previous case concerns the average execution time on the hardware, which derives by
excluding the very high measurements. These very high measurements occur only during
the first execution of the task on the hardware, when the data and the instructions are not
loaded to the caches. The latter measurements correspond to the worst-case measured
execution time. Table 6.7 demonstrates the measurements on the hardware together with
the results of KTA.The results of KTAmodel the worst possible execution time when each
task executes independently and when it runs under the presence of another temporally
and spatially interfering task, i.e. the target task’s pair task. However, Table 6.7 shows
that the presence of interfering tasks does not affect the worst-case hardware measure-
ments, as it affects the average-case hardware measurements. This result indicates that
the multi-core analysis is conservative and might be possible to tighten it. However, the
worst-case hardware measurement do not necessarily correspond to the actual worst-case
execution time and in a multi-core system, it is difficult to emulate the worst case multi-
core interference, e.g. a sequence of requests that result in continuous cache misses. An
identified limitation of the approach is that the memory-access recordings do not provide
information about the order of the remote memory accesses. Providing such information
will add an addition overhead to the analysis, but it might tighten the resulting WCET.

92

Chapter 7

Conclusion and Future Work

This chapter summarizes the work of this thesis (Section 7.1) and discusses the future
work (Section 7.2) that may improve, generalize, and extend the current work.

7.1 Conclusion

This dissertation concerns the problem of estimating the WCET of a task. The WCET
problem is important in the field of embedded systems, where safety-critical systems have
time constraints. The following subsections summarize the work of this thesis project and
discuss the results of the evaluation.

7.1.1 Feasibility of KTA

The first objective of this thesis is to evaluate the feasibility of the one-pass method of
KTA [13] after integrating a low-level analysis. The low-level analysis consists of a cache,
cache hierarchy, and pipeline analysis, mechanisms present in most modern processing
systems. The evaluation examines the expressiveness of the one-pass method including
the overhead of the low-level analysis. In particular, the evaluation compares the analysis
time of KTA against SWEET, a widely used WCET tool. This comparison applies different
optimization levels, i.e. -O0, -O1, -O2, and -O3 to both tools and examines the coverage
and performance of the two methods. The results differ based on the optimization level.
However, the default configuration for SWEET uses the default optimization flag (-O0).
For this reason the conclusion summarizes the results of the default configuration that
corresponds to -O0. The benchmarks that did not return a result form three categories:
timeout, out-of-memory, and failed. The last category represents any type of failure that
can range between compile-time errors and analysis failures. Table 7.1 shows the results of
the evaluation with regards to the number of the unsuccessfully terminating benchmarks
for each tool.
Regarding the performance, excluding all non-terminating benchmarks, 5 benchmarks
perform better in SWEET than KTA, and 18 benchmarks perform better in KTA than

93

CHAPTER 7. CONCLUSION AND FUTURE WORK

failure cause KTA SWEET
timeout 0 1
out-of-memory 5 0
failed 3 4

Table 7.1: Number of benchmarks that do not return a WCET for KTA and SWEET. These results
correspond to -O0 optimization flag.

SWEET. This result supports the feasibility of the WCET method of KTA that includes a
low-level cache analysis.
The next section, Section 7.2, discusses the future work that can improve the coverage of
KTA by implementing the missing instructions and including a more expressive relative
abstract domain, i.e. the polyhedra domain [49]. In addition to that, the failed out-of-
memory benchmarks indicate that there might be possibilities in reducing the memory
footprint of KTA.

7.1.2 Multiprocessor analysis

The second objective of this thesis project is to estimate the WCET on shared-memory
multiprocessor systems. The contribution of this thesis is to design and implement amulti-
core analysis by extending the WCET analysis method of KTA. The multi-core analysis
estimates theWCET of a task running on an symmetric multiprocessor (SMP) system under
the presence of temporally and spatially interfering tasks. The analysis uses the low-
level analysis of the single-core approach that models an LRU cache and a 5-stage RISC-
based pipeline, features that are common in embedded-system applications. Furthermore,
the multi-core analysis implements MESI, a cache-coherence protocol commonly used in
small-scale multiprocessor systems used in the field of embedded systems.
The evaluation of the multiprocessor analysis reveals some difficulties in evaluating a
multi-core approach using a hardware platform. These difficulties depend on the com-
plexity of the effects that the temporal interference has on parallel tasks and the difficulty
in controlling this interference without intervening in the execution.

7.2 Future Work

The project focuses on the low-level WCET of symmetric multiprocessor systems with
private caches as well as the abstract domain representation. The following points sum-
marize the improvements and extensions to the current implementation that are part of
the future work.

7.2.1 Implementation

• Implementation of unimplemented instructions, such as indirect jumps and fre-
quently used Special MIPS32® instructions.

94

7.2. FUTURE WORK

• Evaluation and validation of the analysis using themost recent and complete TACLe
benchmark suite.

• Replace the value abstract domain with the polyhedra abstract domain [49]. The
polyhedra domain is relational and is expected to increase the coverage of the
method.

• Extension of the multiprocessor analysis to support other coherence protocols.

• Improve the memory footprint of KTA by optimizing the current implementation
or selecting appropriate data structures for the cache and memory.

7.2.2 Future Research
• Redesign the pipeline to make it less dependent on specific dependency patterns.
The purpose is to design a configurable state for different pipeline configurations.

• Analysis and integration of code patterns into the analysis in order to improve the
expressiveness. These patterns include common code sequences that occur as a
result of compiler optimizations.

95

Appendix A

CPS code

open Abs t rac tMIPS

open P r i n t f

open Unix

l e t gp_addr = (4 2 3 1 2 8 0)
l e t mem = []

(* −− Ba s i c B l o c k I d e n t i f i e r s −− *)

l e t f i n a l _ = 0
l e t f a c t _ = 1
l e t l 2 _ = 2
l e t l 1 _ = 3
l e t ex1_ = 4

(* −− Program Code −− *)

l e t f i n a l ms = ms

(* F u n c t i o n : f a c t *)

l e t f a c t ms = ms | >
add iu sp sp (−16) | >
sw fp 1 2 (sp) | >
addu fp sp ze ro | >
sw a0 1 6 (fp) | >
add iu v0 ze ro 1 | >
sw v0 0 (fp) | >
j d s l 1 _ | >
s l l z e ro ze ro 0 | >
nex t

l e t l 2 ms = ms | >
lw v1 0 (fp) | >
lw v0 1 6 (fp) | >

97

APPENDIX A. CPS CODE

mult v1 v0 | >
mflo v0 | >
sw v0 0 (fp) | >
lw v0 1 6 (fp) | >
add iu v0 v0 (−1) | >
sw v0 1 6 (fp) | >
nex t

l e t l 1 ms = ms | >
lw v0 1 6 (fp) | >
s l t i u v0 v0 2 | >
beqds v0 ze ro l 2 _ | >
s l l z e ro ze ro 0 | >
nex t

l e t ex1 ms = ms | >
lw v0 0 (fp) | >
addu sp fp ze ro | >
lw fp 1 2 (sp) | >
add iu sp sp 16 | >
j r d s ra | >
s l l z e ro ze ro 0 | >
r e t

l e t bb l o ck s =
[|
{ func= f i n a l ; name=” f i n a l ” ; n e x t i d =na_ ; d i s t = 0 ;
addr =0 x00000000 ; c a l l e r = f a l s e ; } ;
{ func= f a c t ; name=” f a c t ” ; n e x t i d = l 1 _ ; d i s t = 2 ;
addr =0 x00400018 ; c a l l e r = f a l s e ; } ;
{ func= l 2 ; name= ” l 2 ” ; n e x t i d = l 1 _ ; d i s t = 2 ;
addr =0 x00400038 ; c a l l e r = f a l s e ; } ;
{ func= l 1 ; name= ” l 1 ” ; n e x t i d =ex1_ ; d i s t = 1 ;
addr =0 x00400058 ; c a l l e r = f a l s e ; } ;
{ func=ex1 ; name= ” ex1 ” ; n e x t i d =na_ ; d i s t = 0 ;
addr =0 x00400068 ; c a l l e r = f a l s e ; } ;
|]

(* −− S t a r t o f An a l y s i s −− *)

l e t main =
l e t _ s t _ t ime = Unix . g e t t imeo f d ay () in
ana l y z e f a c t _ bb l o ck s gp_addr mem [] [] 0 ;
p r i n t f ” Time ␣ E l ap s ed : ␣ % f s \ n ” (Unix . g e t t imeo f d ay () −. _ s t _ t ime)

98

Appendix B

Mälardalen Benchmarks

Benchmark Function Input Floating-Point
Known Issues

SWEET KTA

adpcm.c
main
my_cos a0=[0,6282]
my_sin a0=[0,6282]

bs.c binary_search a0=Any
bsort100.c main -
cnt.c main -

compress.c
main - -O2, -O3: The

compilation fails
with an LLVM Error:
emitConstant()

compress -

cover.c main - Indirect Jumps: jr, not
supported

crc.c
main -
icrc a0=[0,5]

a1=[40,50]
a2=[0,5]
a3=[1,5]

duff.c 7

edn.c main - -O2, -O3: The com-
pilation fails with
and LLVM Error:
unsupported: visitIn-
sertElementInst()

expint.c
main -
expint a0=[30,50]

a1=[1,10]
fac.c fac a0=[1,10]
fdct.c main -
fft1.c 7

fibcall.c fib a0=[0,10]
fir.c main -
insertsort.c main -

99

APPENDIX B. MÄLARDALEN BENCHMARKS

janne_complex.c
main -
complex a0=[0,30]

a1=[0,30]
jfdctint.c main -
lcdnum.c main - Indirect Jumps: jr,

not supported, but
some optimization
flags eliminate them.

lms.c 7

ludcmp.c 7

matmult.c main -
minver.c 7

ndes.c main -
ns.c main -
nsichneu.c main -
prime.c prime a0=[0,100]
qsort-exam.c 7

qurt.c 7

recursion.c
fib a0=[0,10] The analysis

terminates with
failed assertion:
assert(exit.nodes.size>0).

kalle a0=[0,10]

anka a0=[0,10]

select.c 7

sqrt.c 7

statemate.c main -
st.c 7

ud.c
ludcmp a0=[0,30]

a1=[0,30]
handles long as a
64-bit number, but
the C language
specification [26, 27]
specifies long to be
larger than or equal
to 32 bits, and
mcb32-gcc produces
code for 32-bit long
integers.

main -

ud3.c
ludcmp a0=[0,30]

a1=[0,30]
Modified ud.c (above)
that uses long long
integers, which
always correspond to
at least 64 bits.

main -

whet.c 7

Table B.1: The table shows the benchmarks of the Mälardalen Benchmark Suite. Expressive-
ness evaluation uses all these benchmarks that do not contain floating-point numbers. This table
shows also the functions that the expressiveness evaluation uses. A number of benchmarks con-
tain known issues for either SWEET or KTA.

100

Bibliography

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: principles, techniques,
and tools, volume 2. Addison-wesley Reading, 2007.

[2] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. OTAWA:
An Open Toolbox for Adaptive WCET Analysis, pages 35–46. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[3] Bruno Blanchet. Introduction to abstract interpretation, 11 2002. URL http://www.
cs.tau.ac.il/~msagiv/courses/asv/absint-1.pdf. Accessed: 2017-10-18.

[4] Claire Burguière and Christine Rochange. History-based schemes and implicit
path enumeration. In OASIcs-OpenAccess Series in Informatics, volume 4. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2006.

[5] Stefan Bygde. Abstract interpretation and abstract domains. Master’s thesis,
Mälardalen University, June 2006.

[6] Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter, Pe-
ter Marwedel, and Heiko Falk. A unified WCET analysis framework for multicore
platforms. ACM Transactions on Embedded Computing Systems (TECS), 13(4s):124,
2014.

[7] Patrick Cousot. Abstract interpretation. ACM Computing Surveys (CSUR), 28(2):324–
328, 1996.

[8] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of
generalized type unions. In ACM SIGPLAN Notices, volume 12, pages 77–94. ACM,
1977.

[9] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In Pro-
ceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238–252. ACM, 1977.

[10] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, pages 84–96. ACM, 1978.

101

http://www.cs.tau.ac.il/~msagiv/courses/asv/absint-1.pdf
http://www.cs.tau.ac.il/~msagiv/courses/asv/absint-1.pdf

BIBLIOGRAPHY

[11] cXT200 SoC Datasheet. Creator. URL https://docs.creatordev.io/ci40/
guides/hardwaredocs/cXT200_datasheet2.pdf. Accessed: 2017-06-29.

[12] Christoph Cullmann. Cache persistence analysis: Theory and practice. ACM Trans.
Embed. Comput. Syst., 12(1s):40:1–40:25, March 2013.

[13] David Broman. A Brief Overview of the KTA WCET Tool. ArXiv e-prints, December
2017.

[14] A. Ermedahl, J. Fredriksson, J. Gustafsson, and P. Altenbernd. Deriving the worst-
case execution time input values. In 2009 21st Euromicro Conference on Real-Time
Systems, pages 45–54, July 2009.

[15] Christian Ferdinand and Reinhold Heckmann. aiT: Worst-Case Execution Time Pre-
diction by Static Program Analysis, pages 377–383. Springer US, Boston, MA, 2004.

[16] Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior
prediction for real-time systems. Real-Time Systems, 17(2):131–181, 1999.

[17] Insa Fuhrmann, David Broman, Reinhard von Hanxleden, and Alexander Schulz-
Rosengarten. Time for reactive system modeling: Interactive timing analysis with
hotspot highlighting. In Proceedings of the 24th International Conference on Real-Time
Networks and Systems, pages 289–298. ACM, 2016.

[18] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J.
Stuckey. An Abstract Domain of Uninterpreted Functions, pages 85–103. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

[19] Philippe Granger. Static analysis of linear congruence equalities among variables of a
program, pages 169–192. Springer Berlin Heidelberg, Berlin, Heidelberg, 1991.

[20] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn Lisper. Automatic
derivation of loop bounds and infeasible paths for WCET analysis using abstract
execution. In Real-Time Systems Symposium, 2006. RTSS’06. 27th IEEE International,
pages 57–66. IEEE, 2006.

[21] Jan Gustafsson, Andreas Ermedahl, Björn Lisper, Christer Sandberg, and Linus Käll-
berg. ALF – a language for WCET flow analysis. In Niklas Holsti, editor, Proceedings
of the 9th International Workshop on Worst-Case Execution Time Analysis (WCET09).
OCG, June 2009.

[22] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen
WCET benchmarks – past, present and future. pages 137–147, Brussels, Belgium,
July 2010. OCG.

[23] John L Hennessy and David A Patterson. Computer architecture: a quantitative ap-
proach. Elsevier, 2011.

102

https://docs.creatordev.io/ci40/guides/hardwaredocs/cXT200_datasheet2.pdf
https://docs.creatordev.io/ci40/guides/hardwaredocs/cXT200_datasheet2.pdf

BIBLIOGRAPHY

[24] InterAptiv™ Multiprocessing System Datasheet. Imagination Technolo-
gies LTD, 5 2013. URL http://cdn2.imgtec.com/documentation/
MD00903-2B-interAptiv-DTS-01.20.pdf. Accessed: 2017-06-29.

[25] MIPS® Architecture for Programmers Volume II-A: The MIPS32® Instruc-
tion Set Manual. Imagination Technologies LTD, 5 2016. URL https:
//imagination-technologies-cloudfront-assets.s3.amazonaws.com/
documentation/MIPS_Architecture_MIPS32_InstructionSet_%20AFP_P_
MD00086_06.05.pdf. Accessed: 2017-05-09.

[26] N1548 - Committee Draft - C11 Specification. ISO/IEC 9899, 9 2000. URL http://www.
open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf. Accessed: 2017-09-04.

[27] N1256 - Committee Draft - C99 Specification. ISO/IEC 9899, 9 2000. URL http://www.
open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf. Accessed: 2017-09-04.

[28] Linus Källberg. Circular linear progressions in SWEET. Master’s thesis, Mälardalen
University, December 2014. Version 1.0.

[29] Daniel Kästner, Marc Schlickling, Markus Pister, Christoph Cullmann, Gernot Geb-
hard, ReinholdHeckmann, and Christian Ferdinand. Meeting real-time requirements
with multi-core processors. In International Conference on Computer Safety, Reliabil-
ity, and Security, pages 117–131. Springer, 2012.

[30] R. Kirner and P. Puschner. Obstacles in worst-case execution time analysis. In 2008
11th IEEE International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC), pages 333–339, May 2008.

[31] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order proces-
sors for WCET analysis. Real-Time Systems, 34(3):195–227, 2006.

[32] Y-TS Li, Sharad Malik, and Andrew Wolfe. Efficient microarchitecture modeling
and path analysis for real-time software. In Real-Time Systems Symposium, 1995.
Proceedings., 16th IEEE, pages 298–307. IEEE, 1995.

[33] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software
using implicit path enumeration. In ACM SIGPLAN Notices, volume 30, pages 88–98.
ACM, 1995.

[34] Björn Lisper. SWEET – A Tool for WCET Flow Analysis (Extended Abstract), pages
482–485. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[35] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, 1st edition, 2000.

[36] Thomas Lundqvist and Per Stenström. An integrated path and timing analysis
method based on cycle-level symbolic execution. Real-Time Systems, 17(2):183–207,
1999.

103

http://cdn2.imgtec.com/documentation/MD00903-2B-interAptiv-DTS-01.20.pdf
http://cdn2.imgtec.com/documentation/MD00903-2B-interAptiv-DTS-01.20.pdf
https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/documentation/MIPS_Architecture_MIPS32_InstructionSet_%20AFP_P_MD00086_06.05.pdf
https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/documentation/MIPS_Architecture_MIPS32_InstructionSet_%20AFP_P_MD00086_06.05.pdf
https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/documentation/MIPS_Architecture_MIPS32_InstructionSet_%20AFP_P_MD00086_06.05.pdf
https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/documentation/MIPS_Architecture_MIPS32_InstructionSet_%20AFP_P_MD00086_06.05.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

BIBLIOGRAPHY

[37] ClaireMaiza-Burguière andChristine Rochange. History-based schemes and implicit
path enumeration. In Proceedings of the 6th International Workshop On Worst-Case
Execution Time (WCET) Analysis, july 2006.

[38] Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, and Heechul Yun.
WCET (m) estimation in multi-core systems using single core equivalence. In Real-
Time Systems (ECRTS), 2015 27th Euromicro Conference on, pages 174–183. IEEE, 2015.

[39] Amine Marref and Guillem Bernat. Predicated Worst-Case Execution-Time Analysis,
pages 134–148. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[40] PIC32MX3XX/4XX Family Data Sheet. Microchip Technology Inc, 5 2011. URL
http://ww1.microchip.com/downloads/en/DeviceDoc/61143H.pdf. Ac-
cessed: 2017-02-13.

[41] Antoine Miné. A few graph-based relational numerical abstract domains. Static
Analysis, pages 527–531, 2002.

[42] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computa-
tion, 19(1):31–100, 2006.

[43] SWEET manual. Mälardalen University, Sweden, 6 2016. URL http://www.mrtc.
mdh.se/projects/wcet/sweet/manual/SWEET_manual.pdf. Accessed: 2017-
08-23.

[44] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program anal-
ysis. Springer, 2015.

[45] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algo-
rithms and complexity. Courier Corporation, 1998.

[46] Mark S Papamarcos and Janak H Patel. A low-overhead coherence solution for mul-
tiprocessors with private cache memories. ACM SIGARCH Computer Architecture
News, 12(3):348–354, 1984.

[47] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, MarcoCaccamo, and Lothar
Thiele. Worst case delay analysis for memory interference in multicore systems. In
Proceedings of the Conference on Design, Automation and Test in Europe, pages 741–
746. European Design and Automation Association, 2010.

[48] Rathijit Sen and YN Srikant. Executable analysis using abstract interpretation with
circular linear progressions. In Formal Methods and Models for Codesign, 2007. MEM-
OCODE 2007. 5th IEEE/ACM International Conference on, pages 39–48. IEEE, 2007.

[49] Gagandeep Singh, Markus Püschel, and Martin Vechev. Fast polyhedra abstract do-
main. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, pages 46–59. ACM, 2017.

104

http://ww1.microchip.com/downloads/en/DeviceDoc/61143H.pdf
http://www.mrtc.mdh.se/projects/wcet/sweet/manual/SWEET_manual.pdf
http://www.mrtc.mdh.se/projects/wcet/sweet/manual/SWEET_manual.pdf

BIBLIOGRAPHY

[50] Stephan Thesing. Safe and precise WCET determination by abstract interpretation of
pipeline models. Pirrot, 2004.

[51] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,
Tulika Mitra, et al. The worst-case execution-time problem—overview of methods
and survey of tools. ACM Transactions on Embedded Computing Systems (TECS), 7
(3):36, 2008.

[52] Wei Zhang and Yan Jun. Static timing analysis of shared caches for multicore pro-
cessors. Journal of Computing Science and Engineering, 6(4):267–278, 2012.

105

TRITA TRITA-ICT-EX-2017:207

www.kth.se

